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1.0 INTRODUCTION
The overall objective of this research 1s to provide models for scatter-
ing from randomly rough terrain which can be used with a high degree of con-

fidence in systems engineering applications. In order to accomplish this goal,

two avenues of approach are actively being pursued. The first approach com-
prises the refinement of existing theories while the second approach entails
the development of new theories which go beyond existing models.

At first glance it might appear that such a two-pronged approach does not
represent an efficient use of resources; however, this is not true. For
example, one may argue that existing theories should be thoroughly tested
before expending efforts on advanced techniques. However, the very nature of

the problem precludes a rigorous and complete validation of existing models

because these models are based upon mathematical simplifications and approxima-
tion which are not fully understood. That is, a full understanding of the
limitations of existing models will only come about when these models have

been improved upon by overcoming some of their fundamental inadequacies. Con-
versely, existing models should be developed and refined to the fullest extent
possible so that they can be compared to measurements for the purpose of moving

toward some understanding of their capabilities and limitations.

In research of this nature where there is an immediate need for accurate
models, one must be constantly alert to the pittfalls of using inherently
limited models simply because they produce numbers. In fact, the technical
literature on rough surface scattering is permeated with the application of
models to situations which are totally outside the range of validity of the
models. The apparent success of such efforts is due in large measure to the
clever selection of the surface statistics rather than the true accuracy of

the scattering model. This has led to a great deal of confusion as to which
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model works for what class of surfaces and, most importantly, why. Since it

is extremely doubtful that the kind of surface measurements necessary as inputs
to the model will ever be available, the only alternative is to turn to theo~
retical approaches for improving existing models. That is, for scattering
situations where there is significant concern that the existing models may not
be valid, it would appear that improvement of the theory is the only viable
approach. For this reason, the majority of our efforts during this period have
been devoted toward developing and improving upon our fundamental knowledge of
rough surface scattering.

Very often when one conducts research directed toward fundamental issues
it is of a very esoteric nature and it has very limited practical application.
However, such 1s not the case with this research. 1In fact, after establishing
some very basic techniques, it is shown that these can be used immediately to
derive results which are directly applicable to real problems. For example,
one often sees in the technical literature on random surface scattering use
made of approximations derived from deterministic scattering theory. While
such approximations must hold on a sample by sample basis, it is not clear that
they pass unaltered through the averaging process necessary to construct the
mean scattered field and power. With the techniques developed herein, it is
possible to follow these approximations all the way through the averaging process
and therefore rigorously derive their impact upon the statistical moments of
the scattered field. Thus, while some of the topics addressed in this interim
report may appear to be far removed from useful terrain scattering models, it
must be remembered that they are the beginnings of an attempt to build a solid
foundation for rough surface scattering theory which has heretofore been less

than satisfactory.
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Summary of Results

In Section 2.0 an integral equation for the stochastic Fourier transform
of the current induced on a perfectly conducting rough surface by an incident
plane wave is developed. The stochastic Fourier transform of the current is
defined as the multidimensional Fourier transform with respect to all stochastic
surface characteristics upon which the current depends, i.e. it is a transform
from Vn;,n=0,1,2,"', space to ia,n=0,1,2,---, space where Vn; represents the
nth order directional derivative of the surface height ¢ . The integral equa-
tion is developed by multiplying the magnetic field integral equation for the
current in coordinate space by a Fourier kermel involving all orders of sur-
face height derivatives and their associated transform variables and then aver-
aging this equation. By converting averages over Vnc to convolutions in kn-
space, there results a singular integral equation of the first kind and of
infinite dimensions. The merit of this approach centers about the fact that
one can clearly see, in the integral equation, the effect of all the higher
order surface height derivatives. Furthermore, it is possible to truncate
the infinite dimensionality of the integral equation by retaining only those
orders of surface height derivatives which have a significant variance. Rela-
tionships are also developed which show how the stochastic Fourier transform
of the current may be employed to determine the statistical moments of the

scattered field. Limiting cases of a gently undulating surface and a uniformly

rough or pseudo white noise surface are explored relative to the average scattered
\ field generated by them. For the uniformly rough surface, an exact one dimen-
sional singular integral equation for the average scattered field is obtained
and it is found to be very similar to the first hierarchy integral equation
resulting from the diagrammatic technique. Contrary to perturbational tech-

niques, this result does not predict that a uniformly rough or pseudo white noise
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surface will act as a perfect reflector.

In Section 3.0 an approximate technique is developed for estimating the
average field scattered by a uniformly rough surface. The analysis is based
on the remarkable similarity between the dominant terms in the magnetic field
integral equation for the current for both the uniformly rough and the gently
undulating surfaces, i.e. the only essential difference relative to the mean
scattered field is the effect of the grossly different surface correlation
lengths for the two cases. This similarity suggests that if the small corre-

lation length associated with the uniformly rough surface could be mathematically

introduced into the description of the scattering associated with the gently
undulating surface and if the latter scattering problem could be solved then
it should be a good approximation to the uniformly rough surface scattering
process. The essence of the approach is mathematical similitude; that is, the
technique in itself does not necessarily have any physical interpretation.

Consequently, it is absolutely essential that the results are capable of being

put into cae to one correspondence with one's physical understanding of the
scattering process. To accomplish the introduction of the artificial corre-
lation length into the scattering description for the gently undulating sur-
face, the gently undulating surface is replaced by a discrete approximation
comprising large, non-overlapping, flat areas having random elevations with
respect to the mean planar surface. The average scattered field produced by
this approximate surface is found to depend upon the degree of correlation
between adjacent large flat areas. It is at this point in the development
that the artificial correlation length is introduced, i.e. rather than taking
the large areas to be highly correlated corresponding to the true gently undu-
lating surface they are, instead, taken to be uncorrelated. The resulting

average scattered fleld is subsequently found to depend upon the number of




interacting areas and their height variance. Furthermore, the results show that
the number of interacting areas which give rise to a maximum scattered field
increases with surface roughness. Physically, this observation corresponds to
the fact that as the roughness increases so does t e degree of multiple scat~
tering on the surface, i.e. an increase in multiple scattering implies an
increase in the number of effective interacting areas on the discrete artifi-
cial or substitute surface. Thus, the results of the analysis do indeed appear
to have a very good physical basis. Comparison of numerical results with ap-

proximate results from the diagrammatic approach show very good agreement over

the range of Rayleigh parameter where one should expect agreement.

In Section 4.0 the problem of scattering from surfaces which are neither
Gaussian distributed nor do they become statistically independent as they
become decorrelated is considered. This is a very important practical problem
because there is certainly no guarantee that real terrain is adequately repre-
sented by a surface roughness which is Gaussian distributed. The stochastic
Fourier transform of the current, developed in Section 2.0, is used to derive
exact expressions for the mean and variance of the scattered field. For sur-
faces in which decorrelation does not imply statistical independence it is
found that the variance of the scattered field or the incoherent power has two
distinct parts. The first part is the conventional so-called diffuse power
which is related to the spatial Fourier transform of the two point joint char-
acteristic function for the random surface characteristics. The second part
of the incoherent power is specular in its angular behavior and it is determined
by the difference between the two point joint characteristic functions for de-
correlation and statistical independence. A numerical comparison of this
specular incoherent power term with the mean scattered field for a gently undu-

lating exponentially distributed surface is also presented. When the Rayleigh
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parameter is much smaller than unity, the power associated with the mean scat-
tered field is the larger quantity. Near a Rayleigh parameter value of one,
the two quantities are nearly equal. When the Rayleigh parameter greatly
exceeds one, the incoherent specular power becomes much larger than the power
associated with the mean scattered field. The importance of these results to
the conventional interpretation of scattering measurements are discussed in
depth. These results also indicate that extreme caution should be used in
fitting measured surface statistics to functional forms for the probabilitv
density function in which decorrelation does not imply statistical indepen-
dence.

Section 5.0 considers the applicability of the far field approximation to
scattering from infinite rough surfaces when the incident plane wave illumina-

tion is either bounded or unbounded. This also is a very important theoreti-

cal and practical problem because rough surface scattering measurements are
always interpreted using this approximation and yet its validity has only been
partially demonstrated for very special surfaces. The analysis once again
ugse3 the stochastic Fourier transform of the current in conjunction with the
exact expression for the scattered field. For the case of an incident plane
wave which is unbounded, it is shown that the mean or average scattered field
is a redirected plane wave propagating in the specular direction. The ampli-
tude of this plane wave is attenuated relative to the incident field by the
effects of the surface roughness. Furthermore, its polarization is dependent
upon the multiple scattering processes occurring on the surfaée. The variance
of the scattered field or the incoherent power in any one direction is found
to depend upon a weighted average of the angular spectrum over all angles (both
visible and iuvisible) or directions. This result clearly shows that the con-

cept of a far field is not aspplicable to the case of unbounded illumination
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because in the far field approximation the scattered power should be d ter-
mined by one and only one Fourier component of the angular spectrum. When

the incident illumination is bounded, the far field approximation for the mean
scattered field is found to be valid provided the cross sectional area of the
incident field is very large compared to the <ruare of the electromagnetic
wavelength. This caveat is necessary to insure that the difference between
the support of the incident illumination and the support of the current is not
significant. These two supports will be different when multiple scattering on
the surface 1s important. For the variance of the scattered field, it is
further necessary to assume that the support of the incident illuminaiton encom-
passes many surface decorrelation intervals in order to bring the exact result
into agreement with the far field approximation. Finally, the exact results
are used to show why the far field approximation breaks down when the incident
illumination is unbounded.

All of the following material has either been accepted for publication in
journals or it is presently in the review process for publication in a journal.
Consequently, the style of the sections is tailored to the demands of the par-
ticular journal. In order to avoid a complete retype of the material, it was
decided to include it in this report as it was sent to a journal. This choice,

hopefully, will not be too confusing to the reader.
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A Stochastic Fourier Transform Approach To Scattering

From Perfectly Conducting Randomly Rough Surfaces

by
Gary S. Brown
Applied Science Associates, Inc.
Apex, North Carolina 27502

Abstract

An exact alternative approach to the diagrammatic technique for treating
scattering from rough surfaces is developed. The magnetic field integral equa-
tion for the current induced on the rough perfectly conducting surface is multi-
plied by a Fourier kernel involving all orders of surface height derivatives and
their associated transform variables. Averages of this weighted equation are
converted to convolutions in the transform domain. The result of this opera-
tion is a singular integral equation of the first kind of infinite dimensions
(because of the infinite number of height derivatives) for the stochastic Fourier
transform of the current. A procedure is developed for estimating the effects

of ignoring one or more surface height derivatives in terms of the range of

validity of the resulting approximate solution. Special limiting cases of

very gently undulating surfaces and uniformly rough surfaces are examined.

New and illuminating results are obtained for the latter case.

Introduction and Summary

There 1is a very definite need to move beyond the approximate rough surface
scattering solutions provided by physical optics and boundary perturbation the-
ory. The first clear indication of this need was the failure of physical optics
and perturbation theory to accurately predict the magnitude of the average field
[1] and acoustic pressure (2] scattered by a roughened water surface for large
surface roughness. Measurements of the incoherent average scattered power {3]
have also provided results which are not in agreement with an appropriate
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combination of the above noted single scattering approximations. Of course it
is one thing to recognize the need for a less approximate solution but quite
another to obtain such a solution!

Recently, a significant advance toward this goal has been provided by the
work of Zipfel and DeSanto [4] and subsequent work by DeSanto [5,6]. The re-
sults obtained in these analyses were based upon two very important points
which should be emphasized. First, by recasting the coordinate space integral

equation in the transform domain, the authors were able to circumvent problems

associated with the stochastic nature of the coordinate space integral equation
for the "surface" Green's function. Second, by using cluster decomposition

and partial summation techniques it was possible to express the solution of
the transform space integral equation in terms of integral equations involving
successively higher orders of surface and field interaction. Numerical solu-
tion of the integral equation involving the first order interaction for the

average scattered field (the zeroth order interaction being the physical optics

approximation) has clearly shown the physical optics approximation to be inade-
quate for large surface roughness and small correlation length [7]. The strength
of this result lay primarily in the rigorous nature of the approach and, con-
3equently, the generality of the solution. Unfortunately, the solution does

not lend itself to an obvious physical interpretation. Furthermore, it is also
not always easy to see the direct effect of the surface's statistical charac-
teristics io the higher order integral equatioms.

The purpose of this paper is to present an approach and a solution which
provides a bit more physical insight into certain aspects of the problem. In
particular, one of the strong points of this approach is that it allows a direct
correlation between surface statistical approximations and the range of validity

of the resulting solution. This is an important result because it allows one
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to estimate when an approximate solution is valid and when it breaks down based
upon the statistical characteristics of the rough surface.

The analysis 1s based upon the magnetic field integral equation (MFIE)
for the current induced on the surface of a perfectly conducting body. Since
any statistical moment of the scattered field can be obtained from knowledge

of the current, this is a logical starting point. A key element in this or any

anaiysis involving stochastic integral equations is the technique employed to

overcome the stochastic nature of the integral equation. The approach used
[e o]
L
n=]1
(where Z(x,y) is the stochastic surface height, V{(x,y) are the stochastic

here is to multiply the MFIE by the Fourier kermel exp{jklc +j in+1'VnC}
surface slopes, etc.) and then average the resulting equation over f, Vg, etc.
The averages, however, are converted to convolutions of the terms in the inte-
gral equation and the Fourier transform of the appropriate joint probability
density function for the stochastic variables f, VZ, etc. Thus, whereas Zipfel
and DeSanto [4] used a coordinate space transform to overcome the difficulties
associated with the stochastic nature of the problem, this approach transforms
all of the stochastic variables (7, VZ, etc.) into a non-stochastic space

(kl, 12, etc.). The formal result of these and other manipulations are coupled
integral equations for the x and y components of the current which are Fredholm
equations of the first kind. The dimensionality of these two integral equations
is formally infinite because the current depends, in general, upon g, Vi, etc.
The explicit dependence of the integral equations upon the surface statistics
is contained in the single and two-point joint characteristic functions for

the variables G, Vi, etc. By examining the way in which the surface statistics
(<;2>,<(Vc)2>, etc.) appear in the characteristic functions, it is possible to
translate the neglect of higher order surface height derivatives directly into

criteria for the range of validity of the resulting approximate solution. An
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orderly procedure for relating mathematical simplifications to the surface
statistics is presented.

As an example of the power of this technique, it is applied to surfaces
having a correlation length much larger than the electromagnetic wavelength
(very gently undulating surfaces) and to surfaces having a correlation length
much smaller than a wavelength (uniformly rough surfaces). For very gently
undulating surfaces, the technique provides results which are in agreement with
the scalar single scattering or physical optics approximation. For uniformly
rough surfaces, the stochastic Fourler transform approach is found to yield
two parts to the slope normalized surface current, i.e. 35(;)¢1-+|Vc‘2 where
js is the current. One part is found to be a function of only the stochastic
surface height while the other part depends on the surface height and slopes
but in such a manner as to contribute nothing to the average field scattered
by the surface. An integral equation for the average scattered field is derived
for the uniformly rough surface and it is found to be similar to the approximate
equation obtained previously by Zipfel and DeSanto [4}. Finally, it is argued
that the gently undulating and uniformly rough cases provide lower and upper

bounds, respectively, on the average scattered field for a fixed height variance.

Approach Rationale

The stochastic surface height Z[(x,y) is defined with respect to the z = 0
plane and is taken to be a zero mean statistically homogeneous
process, The region above the surface is free-space while the medium be-
neath the interface is perfectly conducting. For a "sufficiently well behaved"
surface, the current 33 induced on the surface by an incident magnetic field ﬁi

is given by the so-called magnetic field integral equation [8, pg. 354];

+ > A > >4 > 1 a2 > +> >
Js(r) = 2n(r) x H (r) + S fn(r) X[Js(ro) x Vog(|r—rol)] dSo 1)
S
o
where ﬁ(?) is the upward directed unit normal to the surface and 8(|;-;°|) is

2-4




proportional to the free space scalar Green's function, i.e.
arr ~ - A 2 2
@ - [Fogx-cg+e] Vil t,

g(|T-7 ) = ewp(-1k |T-F )/ [F-% |

and ko = 2w/ko is the free-space wavenumber. The quantities §x = 3r/dx and

Cy = 37/9y are the x and y components of the surface slope. Expanding the
double cross product in (1), converting the surface integration to an integra-

tion over the z, = 0 plane through dSo = + ;2 + Cf d;to » and multiplying

x
SN | [e) o
both sides of (1) by V1 + ;3 + cj yields the following;

3G - A x 2t + = f{'[ﬁ(i).vogﬁ(?o) - [ﬁ(?)-?(?o)]vog}&t (2)
(o]
where

e R LWL RO

NG = VA + cxz +2 8@

y

=
drto = dxo dyo

and the integration is over the entire z, = 0 plane. Since the current must
A2 +:2 3 V3a

be tangential to the surface and ‘+;x + ;y >0, N(ro)-J(ro) = 0 and the

z-component of the current may be expressed in terms of the x and y components

as follows;

-+ -> -
Jz(ro) - ;onx(ro) + CYOJy(rO) 3)

Substituting (3) in the right side of (2) yields two coupled integral equations

for Jx(;) and Jy(;). The coupling is a consequence of the term [ﬁ(?)-j(;o)]vog
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=
which, using (3) to eliminate Jz(ro), has the following x and y-components;

v g . _ > _ > 98
(ReH-3G,)) 5 {(cx ) * (5, cyo)Jy(ro)} 3, )

where q, is X, 0T ¥, . Thus, it is the x and y-components of (2) along with
(3) which provide the essential relationships for the vector components of the
current.

Having found the current, it is then possible to determine the far-zone
scattered electric field in the direction ﬁs and at a distancc R, from the z=0

plane via the following relationship [8,pg. 36I1)

k,n ~ ~ > > > >
Es =] 04".0 g(Ro)ks x ks X fJ(;)exp(j ks'r) dr, (5)

>

where = xx+yy +2(x,y)%, 'is =k &+ k9 4+ k2, d?t = dxdy , and the inte-
gration is over the z = 0 plane. Of particular importance however are the
statistical moments of the scattered field such as <ES> and <|§S|2> where <e<>
denotes an average over all random quantities. In view of the factor exp(jkszc)
in (5), it would do no good to compute <3(;)> from (2) and (3) because the aver-
age of the product is not, in 2eneral, equal to the product of the averages.
One could multiply (2) and (3) by exp(j kszc) and average the resulting equa-
tions but the result would only be useful in computing <Es> . That is, higher
order field mements would require a new solution of some appropriately tailored
form of (2) and (3). This type of reasoning leads to the conclusion that what
is needed i3 a one-time solution of (2) and (3) which could be used in (5) or
any order gself-product of (5).

The average of (5) entails multiplying by the probability density function
(pdf) for all stochastic variables upon which 3 depends and then integrating

the product over all stochastic variables, e.g.
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<F@exp( k , 0)> -f..fﬁGt,c,v;....)exp(J kg, 0P, (5,9E,..2)

* dgdvg .- (6)

where it has been assumed that the order of integration [over r, in (5)] and
averaging can be arbitrarily interchanged. The surface slopes (VZ), curva-
tures (Vzc), rate of change of curvatures (VSC), etc. are included because, in
general, the current is a function of these stochastic variables. Starting
first with the integral over Z in (6), it is obvious that this is identical to
the Fourier transform (with respect to Z) of the product of the current and the
pdf. Since the Fourier transform of the product of two functions is the con-

volution of the tramnsforms, the L-integration can be expressed as follows;

fj(;t.c,vc.---)pl(c.Vc.-. .Jexp(j k., ) dg

=lf‘IrGt.kl.Vc.vzr,..-.)51(ksz-k1,\7c.v2c,...)dkl )

where the tilde denotes the Fourier transform with respect to . In a simi-
lar manner, the integrations over the slopes(VZ), curvatures(Vzc), etc. can

n
also be written as convolutions so that (6) becomes (with Sy =1§11)

<3(¥)exp(j ksz 7)> = 1lim lsn ./i...lp‘3(;t,kl,§2,...,in)
)

nso (27

« Bk K K. ,...,-k )k, dk....dk (8)
1Yz 1 2 n" 1 n

2

where in is an n-dimensional transform vector associated with Vnc and the tilde

implies Fourier transforms with respect to g, Vi, Vzc, etc. If the second
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moment of the scattered field, <|ES|2> s, 18 desired, it may be obtained from

.

knowledge of the following products;

N> n

<Jq(¥)Jq* (r"explsk__(z-2")]> = lin ——J;—z—ff Tk okyeee k)
(2my "

o -~ > _ [ _ v e _")' x _ _ _ '_‘P _—P' ..._—‘P -)'.-? -—P' '... > -’.
{Jq(rt, ks IZ, , k“)} Py -k =k =kirk,rky ook k! T ~T))dk k- dk dk!

(9)
where * denotes the complex conjugate and pz(-) is the two-point joint prob-

ability density function. In obtaining the above result, use has been made of
the fact that FLﬂ:(C,VC,"')] -{3q(-k1,—§2,'--)}* where F denotes the Fourier
transform operation. The Fourier transforms of the single and two point joint

probability density functions are the single and two point joint characteristic

functions, respectively [9, pg. 254].

It is obvious from (8) and (9) that if the Fourier transform of the cur-
rent with respect to the stochastic variables can be found then <ES> and
<|Es|2> may be determined by a straightforward integration of knowr functions.

Thus, the problem reduces to solving for the stochastic Fourier transform of

the current using (2) and (3). Unfortunately, one cammot simply take the
stochastic Pourier transform of both sides of (2) in a direct manner; such an
operation must be accomplished within the framework of probability theory.
That is, both sides of (2) are first multiplied by the stochastic Fourier ker-
nel exp{jk1§ + 3 ?; §n+1-v“c} and then averagedover all stochastic variables.
The averaging ope:ation weights each term in (2) by an appropriate probability
density function. For example, the left side of (2) and the source term on
the right side are weighted by the single point joint pdf while the integral

term is multiplied by the appropriate two~point joint pdf. The averages over

5,V;,*** and CO.VO;O,-" are then converted to integrations with respect to

2~8




the transform variables by means of convolution identities. The ret result is
an infinite dimensional Fredholm integral equation of the first kind for the
stochastic Fourier transform of the current. This is the essence of the sto-

chastic Fourier transform technique.

Detailed Development

While the basic concept of the stochastic Fourier transform approach is
straightforward, there are a number of details associated with converting (2)
into the appropriate integral equation which require amplification. Further-
more, there 1s at least one intermediate result which has significant implica-
tions and should, therefore, be derived in an orderly manner. Since the con-
version of (2) requires dealing with an infinite number of stochastic variables

(C,VC,VZC,---) and their associated transform coordinates (k '13,'°°), the

-
likzi
algebra and symbolish is very tedious especially because of the term

[ﬁ(;)'j(;;)]vog . Ignoring this term in (2) does not impact the generality of
the approach because if one understands how the term [ﬁ(;)-voglj(;) is treated
ther inclusion of the neglected term can be accomplished almost by inspection.

Thus, ignoring the coupling term in (2) yields the following two decoupled

scalar equations;

2 e 0B x BE 1 -, 98 _, 38 .38\, 242
Jq(r) 2q-{N(r) x H (r)] + o f{ Cx 3xo gy 3Yo + 3C° Jq(ro)drto (10)

where q = x or y. From a practical point of view, ignoring the coupling term
in (2) implies that the curvatures (Vzc) and higher order derivatives of the
surface height, according to (4), are negligibly small; however, this simplifi-
cation will not be used in this sectiom.

Multiplying the left sfde of (10) by the product of the Fourier kernel
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[ ]
exp{jklt; +3 I -l:n+1'Vnn;} and the single point probability density
n=1

pl(;,Vc,Vzc,---) , integrating over all the stochastic variables to form the

. average, and converting these integrations into convolutions in the Fourier

transform domain yields

> ® 5 1 ~ > -»>
J @ explikiz + Lk, 0VC)> = Lin ff I BBy B

n-ree sn
(2m)
- Bk, -8k, -B,, oo K -B ) a8 ab, - ab_ 1)

where ;t = xx + y§' R Eq(') is the stochastic Fourier transform of Jq(;),
and 51(') is the characteristic function for the single point joint pdf, i.e.
the stochastic Fourier transform of the joint pdf. Taking the incident mag-

netic field on the surface to have the form

>4 > ~ >
H(r) = H hexp(-3j kit r,-ik;, 8, 12)

n > >{ -+
the term 2q+[N(r) xH (r)] may be expressed as follows;

24+ (R(r) x B (D)) = 2u (cd+ cdz_+ c;cy] exp (- jii -?t =3k, )
t

(13)

> >
where ki = ki + k

122 is the incident wave vector of magnitude k_ and direc-
t

tion 121 . The factors czq ’ C: , and qu are determined by the polarization of
the incident magnetic field, i.e. c: = 4+ xh) , ¢l = -qxdy

Cg = -ﬁ' (§Xfx) » and are independent of the spatial (ft) and stochastic
(z,Vg,++) variables. The average of the product of (13) and the Fourier

kernel is a straightforward multidimensional Fourier transform, i.e.

2-10
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Qg (R x B DJexp kg +3 T K T
q-INGr Dlexp kg + 3 E kv

- 1T o q q |
2H exp (- 3k, °r)[C, +3CQ3  + chak ]
t 2x 2y

* Pl(kl' 1z 2’k3) ") (14)

<> ~
where k2 = kaka k2yk2y . The derivatives with respect to k2x and k

' are a consequence of the slope terms Cx and Cy » respectively, in (13).

2y

Averaging the integral term in (10) requires the general two-point prob-
2 >
ability density function pz(C,CO,VC,Voco,V C,Vﬁgo,---;tt-rto) because multi-
plication by the Fourier kernel introduces the additional stochastic variables

VZC,V3§,--- which are not contained in the kermel of the integral equation

‘ (10). Thus, the average of the product of the Fourier kernel and the integral
term in (10) may be written as follows; '
—p 2B, 28, 3 J(r SRR ---)exp[jkr, +3 z K, v“;]d?
X axo y ay 8; ’ ’ 1 t,
-f..f{_; i&.-; 53.3..’._33.}_](; N4 WV T ,e0)
x on y 3y, Bco q to o’ 070
cexpdkg 43 T K oVt| p,(c,E 8, g, e) dE, dTde dVC AT g -
1 a=1 ntl 2'°’20%">* 070’ t, o 0’0
(15)
Assuming that the orders of integration may be arbitrarily interchanged, the
i I-integration can be written as a convolution of the Z-Fourier transforms of
the Green's function derivatives and pz(-) . Noting that

ag(r ¢ 5% ) as(r
0

3;0

= - exp(3§B_ L ) Fc

31;
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where FC denotes the Fourier transform with respect to Z and 80 is the trans-

form variable, and substituting

§(A;t,8°) - Fc fs(A;t’C)} = fg(A;t.c) exp (38 _7) dg

- 3g (AT, 1) dg(Ar,.0)
B (0708 = F, T} = | 55— e (B0

in the convolution integrations with A-;t = ;t-;t reduces (15) to the fol-

lowing form;
ag(Ar ,8,) B(TLB)
Co> = 2 { x - Cy '—‘—a);;—- - gC(Art.Bo)}

3 @ v [ +3 I K -V“]
q(rto,co. ol ") exp | 3B T Jngl S RLNS

~ > 3
* Py (k1 - Bo,co,Vi;,Voz;O, ses ,Art) dBo drto dz;o avg dvor,o (16)

where the tilde symbol denotes the Fourier transform of pz(') with respect
to ¢ .

The t;o-integtations in (16) may be expressed as convolutions with a shift-
ed argument due to the exponential factor in (16). The Voco’ Vozco,--- inte-
grations may be represented by convolutions with no shift in the argument.
Finally, the integrations over Vc,Vzc,. .+ may be written as straightforward
Fourier transforms. Accomplishing all of these operations yields the follow-

ing result;
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. ) f J‘ { ag(zﬁt,eo) ag(/ﬂt,so) .
<e> % 1{m ——a—— fo-- —2_3 + j ——e——3 -g (Ar_,B )
nes  (2my2on I T %k, T I Ty ky, Bt o}

(o]

ese X ,~B ;Ar )dr. d8 dB,---dB
2° *“n’ "n’ rt rto o 1 n

. Jq(rtoselg-ézv vt p.én)i;z (kl_BO’BO-Bl’kz,—-é

a7
where

~ 5 ' > . n -~
Jq(rtoyslagzy“"-én) = f"'f Jq(rto'co’voct'”.’vgco)exP j81§°+3 12—: Bﬂ+l C}

- dg &V g - -dV::;o (18)

and

. , % n n n
exp {j (k)=B)% + 38,88, + 3 2 Ky Te -3 2 B T }

» dzdg dvgav g - -avz dV:CO 19)

The average of (10) weighted by the Fourier kernel is thus found by equating

(11) to the sum of (14) and (17). However, before doing this the substitu-

tion Ax = X=X and Ay==y-yo or A;t==;t-;t is first made in (17); then the
o
equating of terms yields
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lim

1 3@ “ e g _ "_ .'."’_" -’...
o+ (2")31'\ f. : f Jq(rt’Bl’-éz' an)Pl(kl Bl,kz ‘52, ,kn Bn) dB]dBZ dE

= - -' .+ q q q - a— T T * "
2H_ exp ( jkit rt)[Cz +3cd akzx + 3 akzy] By Gk oky Ky, 0)

f f { Ig (AT ,8,) 3E (4T ,8,) .
+ lim 3 +j——23 +§(Ar,8)}
o (2")2+Sn 3Ax k2x dAy k2y Lt o

-

. Jq(rt-Art,Bl,B?_."',B )P (k -8 :8 -Bl’k a-e

> be >
n’ F2'71 "o’ o 2 2’“.’kn’-8n:Art)

- .
° dor, dp  dB,---dB (20)

Since all the three terms in (20) must exhibit the same dependence upon ;t and
-~ - -~
only Jq and exp(-jki ‘-;t) are functions of ;t » (20) implies that Jq may be

t
written in the following factored form;

Jq(rt,B ---) =j (81,82."')exp( jk t'rt) (21)

Substituting this result in (20) and rearranging terms produces the folirwi.rg

>
integral equation for jq(Bl’Bz"“) ;

lim
e (27)

%a f"'qu(srez""'sn) [By ey =8y sky=Byume ke B
> > >
Tp(ByokysByukyse e B k)] aBy dByr-df
- q q q ~ x T T ..
zuo[cz r1cd +13¢ aka] Py (ky=ky ok, kg, o) (22)

where
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F (8 vk B Jk

ag(At 8,) 3B (6T ,B )
R § k ) = .lp.l-{: k + 3 _—_33%._£L_ 3k
n'’n am? 2x y 2y

+ 3 (ar 3 %8,k £ :br
8, TeoB) 5 Py =B 4B =By ukyy=Byytt k0 r,)

2

- - ->
* exp(] ki:'Art>dAtt; dBO (22a)

Equations (21) and (22) provide the equations for determining the x and y
components of the stochastic transform of the current subject to the neglect
of the coupling term in (4). The inclusion of the coupling term is not dif-

ficult and, in fact, can be done by inspection in view of its similarity to

those terms already included in (22). Thus, the complete result is as fol-

lows for q = x or y and Aq = Ax or Ay;

lim
nree

.It':Jqu(Bl’g ’."’gn)[sl(kl_sl’k2-§2""’kn-én)

@em ®

- FZ(Bl’kl’EZ’kz,.'.,Bn’kn)] dsl d-éz"‘dg - lim f f_] ( 22 "'.Bn)
(Zﬂ)

T T S 1 B,
T8y vy By, Bk a8 By a1 — ./~---.[.jy(81,62, B

(2m °

P ¥ ves - q q q = - TOr ...
(Bl'kl'gz"z' ,§n.kn)d81d§2 df_ 2H°[%z+jcx3k2x+jcy8k2;]pl(k Ky oKy kg, t)

vhere

8g(Ar QB )
-+ - > 1 t’ o =~
r 2Ky sBy1kyste B Lk - - +13 k e
x(Bl k1 §2 2 Bn n) (2“)2.I:’. dlq [jakzx i 82392( 1 so Bo -8 k 62

+ -> - + -
kn.-ﬁn;Art)exp(Jkit-Art)dArtdso (23a)
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y] Py (kl-so '30-31 'kZ '-32" o

33 (AT _,3_)
T 1 t’ o .
Ty@poky Byl Bruk) = (2“)2.121. 38q Pak 33,

%_,-B ;0r dexp(jk, *Ar )dAr d8 (23b)
n' PpioT/eXPU it Te r.d%

The z-component of the stochastic transform of the current is obtained

by averaging (3) weighted by the Fourier kermel. This operation leads to the

following;
e -+ 3 - -

1in l {j (s -é o B )-j ajx(Bl'BZ' 'sn)-j Jy(slyezy""sn)}

e » ] »
oy (2")l+.n z 7172 n 38, aBZy

-~ -»> -+ - -+ -é -

. pl(kl-Bl,kz—Bz.---,kn-an) d8, d€, dg =0 (24)

Sirnce this result must hold for all values of kl;iz,"', it follows that

35 (B, \Byytr) B3 (BB e)
2 eee) w x 1’72 y 1°'°2
3o (ByrBpaet) J[ 3%, 98 :]

(25)

Discussion

Cne of the first results of the stochastic transform approach is illus-
trated in (21); that is, the dependence of the transformed current upon the
transverse coordinates x and y is identical to that of the incident plane wave.
An important implication of this result {s that the average scattered field
(obtained by substituting (21) in (8) and this result in the average of (5))

is always specular. That is, the average scattered field is non~-zero only for

ksx - kix and ksy = kiy' It should be noted that the specular nature of the

average scattered field is a general and an exact result for homogeneous sur-

face statistics. However, if the surface has nonhomogeneous statistics then

<Es> will not, in general, be specular because cthe joint two-point probability

density function will no longer depend only on the difierence coordinates A;C.
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The specular nature of the average scattered field was previously demonstrated
by DeSanto [5]) using the diagrammatic approach.

It is interesting to compare (22)*with the results obtained from the dia-
grammatic technique [6]. In the case of the latter approach one obtains an
infinite hierarchy of one~dimensional singular integral equations of the second
kind. 1In order to obtain the integral equations in the hierarchy, one must be
relatively familiar with the use of diagram techniques to form the appropriate
"mass operator” which is related to both the source term and the kernel in the
resulting integral equations. Furthermore, since at a given level of the hier~
archy, the resulting integral equaton depends in part on the solution of the
next lower level integral equation, the approach has practical numerical limi-
tations. Finally, it is somewhat difficult to see how certain statistical fea-
tures of the surface impact the hierarchy of equations. By contrast, (22) is a
single integral equation of the first kind involving an infinite number of vari-
ables. Because of the infinite range of integration, the integral equation is
of the singular type with respect to all variables [10, pg. 160]). Thus, the
fact that (22) is an integral equation of the first kind should not cause too
great a problem. Obviously, (22) cannot be solved numerically for much beyond
three variables (kl,Iz) unless the kernel has a very special behavior with
respect to the higher dimensions. Based upon these points of comparison, (22)
exhibits no clear advantages with respect to the diagrammatic approach except
that it is more compact.

There is, however, one aspect of (22) which is extremely useful and does
not appear to be obviously present in the diagrammatic technique. The impor-~

tance of all the higher order surface height derivatives is explicitly contained

*The remainder of this section will deal with the scalar formulation for j
because of its more compact form. The concepts and developments applv equally
well to the vector equation (23) however.
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in the two-point joint characteristic function ;2(-) in (22a). It is therefore

a reasonably straightforward task to determine the conditions under which a

certain surface height derivative is no longer important in the determination

of the stochastic Fourier transform of the current. The logic for accomplish-

ing this task is as follows. Assume, for example, that one would like to know

when the curvature, Vzc , and all higher order derivatives have no significant
impact on the current. If they are not important then Jq(;t,;,VC,---)will3be essen-
tially independent of VZQ,V3C,"' so that jq(81,§2,§3,"’)=jq(8 B y(27) jﬁ;d(én)
because the transform of a constant is a delta distribution. Substituting this

result in (22) yields;

j(s,s)p(k B.k-BL k)91

> - > > -+ >
- Ty Bk ek 00k g, 50, ) /5 ey -8y KBy Ko K L a0

=26 [c?+3c%, +3c¥s By (ky=k, kK. ee) (26)
o] z x k y k2y] 171 "4z2727 3 -

2x

In order to make things explicit, let the stochastic variables VZC,V3§,--- be
statistically independent of 7 and VZ . Then the single-point characteristic

function may be factored as follows;
- +> > -
pl(kl‘slykz'sz’k3"")-pl(kl's k B )Pl(k3, 4° )

where 51(') 1s the single-point characteristic function for the indicated vari-

ables. Substituting this identity in (26) and dividing by 51(13,§4,-'-) yields

1 > > =

> +
-T (Blal( ;B k 0 k3g"',01kn)/§1(k1"619k2-§ )Pl( 3 4: ".kn) }d81d§2

- q q q Bk, -k, .k
ZHo[cz +1 cxakzy +1 cyakzy] Py, -k, 5 0k,) (27)
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The right side of (27) is independent of k3,§4,--- whereas the left side still
depends on the variables through the FZ/BI term. Since this is an impossible

situation, one examines the T2 /51 term to determine the conditions for which

-
it is essentially (but not trivially) independent of k3,k4,°-- . Thus, the

stochastic Fourier transform technique provides a very orderly procedure for

estimating the importance of the surface height derivatives. This result ap-

pears to be one of the most important advantages of this technique.

Limiting Cases

In the previous section the stochastic Fourier transform approach has been
introduced, developed, and one of its merits hasbeen discussed. However, the
real power implicit in the technique results from its ability to provide exact
results for two very important limiting cases. In order to be specific, the
randomly rough surface is assumed to be a jointly Gaussian process; {11] pro-
vides details on the form of 51 and 52 for a Gaussian process. Such an assump-
tion is not essential to the following development but it does facilitate com-
parison with previous results. Furthermore, it will be assumed that the sto-
chastic surface height has a well defined spatial correlation function
R(A;t) = <c(;tl)c(;t1+-5;t)> which decays with increasing |A;t| such that the

concept of a correlation length () has meaning.

Gently Undulating Surface (% >> Ao)_

The first limiting case to be considered is that of a surface of arbitrary
height but so gently undulating that none of the surface height derivatives
(Vnc,n-l,Z,---) are important to the determination of the current. For such
a surface, the correlation length is necessarily much larger than the electro-
magnetic wavelength (L >> Ao).

Using the technique developed in the previous section it is possible to

determine the conditions under which the height derivatives are not important,

To shorten matters somewhat, the technique will be demonstrated by considering
2-19




only surface slopes. That is, <(VnC)2> for n=2,3,-** are assume!d tobe vanishingly
small so that the single and two-point joint probability denslity functions ap-
proach centered delta distributions with respect to these variables. Conse~
quently, the joint characteristic functions Bl and 52 in (23) become indepen-
dent of En and tn for n=2,3,:+- and the transform of the current may be written
as follows;

s -3 ®

- & o = ® Tr 3
1qBByBy e = 3 @B e T T s@) 28)
This result is merely a restatement of the fact that the current, under these

conditions, is independent of the surface curvatures (Vzg), rate of change of

curvatures (V3C), etc. To determine when the slopes (VZ) may be ignored, 51 is
factored out of Pz, Fx, and Fy in (23), jq(Bl,gz) is assumed to be of the fol-

lowing form
2
14BB = 3, BPsBEHeM 29)
-~ ~ ~ + . »
and the residual dependence of lepl ,I‘x/p1 , and I‘y/p1 upon k2 is examined

after dividing both sides of (23) by 51(§2). These operations lead to the fol-

lowing simplified form for (23);
1 . ~ > ~ > 1 . ~ _
> “ -+ >
= q_ 2 9_..,2 Q1= -
2“0[?2 j<I;x>k2xcx J<Cy>k2ycy]p1(k1 kiz) (30)
where

2, Lo 1 38 [_ (2 ) .
o ff{a Sh[-<eBry s 68pr,] + 3 BR[- <o bk, 4 (s, Bl)Ry]+gC}

1

- X exp(gk, -A?t)dAFtdso (30a)
t
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r .

__x.. B - ._1__. is-.{_ 2 - - - T . > >

: o J. f 150 [<eoR  Jk, +(28,-8, -k R nykzx}xexp(Jkit Ar )dor dB
(30b)

2 - jﬁ{-[<cz>+R ]k +(28 -B. -k, )R_-R_ k. lxexp(jk, +Ar. )dAr df

P1 em? dhq y yyi?y ollyxyZy}prit t" e o
(30c)

and

X = exp {- [<c”> - RI(B,-B; ) (B,=k;) + (B,~8) ke, R, +K, R ) (304)

In the above expressions <Cx2> and <I;y2> are the variances of the slopes in the
x and y directions while Rx=3R/3Ax , Ry-BR/'AAy , etc.

Consistent with the assumption in (29), jq(Bl) is to be determined from
(30) and the resulting solution must be independent of the slope statistics
and iz. For arbitrary slope variances this is not possible and it is necessary
to examine the conditions under which the slope dependent terms in (30) can be
made small. The terms on the right hand side of (30) which depend linearly
upon _122 can be made small by taking <Z;x2> <<1 and <cy2> <<1. 1If the slope

variances are small, the correlation function may be approximated as follows;

R(A}’t) z <g?> - -;—<cx2> (ax)? - %<cy2>(Ay)2 (1)

because <(Vnc)2> for n=2,3,--- have already been assumed to be vanishingly
small. Also, the coordinate system has been oriented such that there are no
Ax+Ay terms in (31). In view of (31), the terms in (30b) and (30c) which de-

pend linearly on k

2% and k2y’ respectively, vanish. The exponential in (30d),

using (31), may be written as follows;

x = em {- Lo 2> o0? + <o B> o ?]6,-8) @,

® n n 2 2 n
3 1" B -8 [<t Dk, tx+ <t Bk, o] )
n!
n=o

The terms in (30a)-(30c) which have Rx or Ry multiplying the Green's function
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derivatives may be lumped with the series expansion in (32). The Art-integration
>

in (30a)-(30c) may now be treated as a convolution of the Art—Fourier transform

of (32) with the transform of the Green's function derivatives. The transform

of the Gaussian factor in (32) is

2 2
-~k k
1 1 . ix iy .
— P TE ) B,k | } (322)
21m(8,-B) (By-ky et F><r 2>

For small slope variances (32a) behaves as a delta distribution which combs the
transform of the Green's function derivatives out of convolution. The terms

in the power series in (32) give rise to ngb derivatives of the delta distribu-
tion which, in turn, yields derivatives of the transform of the Green's func-
tions. However, because of the slope variances in the power series in (32),
the nth derivative of the transform of the Green's functions will be multiplied
by a slope variance raised to the nth power which is vanishingly small. Thus,

the only term left in (30a)-(30d) is

~ 1 ~ > > >
I'./p, = ——-—ffg exp (jk, +Ar ) dAr dB8
2°71 (2ﬂ)2 4 it t t o
However since the A;t-Fourier transform of §C is an odd fuuction of Bo’ I‘Z/f)l

is identically zero and (30) becomes
1 ~ - PP P .
o jq(Bl)pl(k1 Bl)dﬁl z 2Cz pl(k1 kiz) (33)
so that j (8,) = 2H, CzqG(Bl—kiz)(Z'n) or

1q(2) = 20 C} exp(-3k,, ©) (34)

which is the scalar single scattering physical optics result. With kl=ksz =—kiz,
(33) shows that the average field scattered by the surface is attenuated from

its flat plane value by the factor Sl(-Zkiz) = exp(—Zk;!<C2>cosze). This is
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the classical result which simply says that i1f the surface is sufficiently

smooth, the average scattered field appears to be due to a randomly elevated
plane. The important point to note from this development is that for a very
gently undulating surface which has a correlation length which is large com-

pared to Ao, scalar single scattering or physical optics is applicable.

Uniformly Rough Surface (£ << Aolg

A much more interesting limiting case is provided by surfaces which have
arbitrary height but a correlation length which is small compared to ko. Such
surfaces necessarily have a great deal of their height variance contributed by
undulation frequencies the order of and greater than ko, the electromagnetic
wavenumber. Consequently, there is absolutely no reason to expect physical
optics to be an adequate approximation for the scattering process and, indeed,
this is found to be the case.

Before proceeding, it is worthwhile pointing out why it is the ratio of
the correlation length to Xo that is a critical parameter. Departures from
single scattering are caused by the FZ’ Fx, and Fy terms in (23). These terms,
as illustrated in (22a), (23a), and (23b), are determined by an integration over
A;t. The quantities which appear in the A;t-integrands are dependent upon Xo
and the correlation length as scale parameters. Thus, these parameters dcter-
mine whether it is the electromagnetic functions or the statistical functions
which dominate the A;t—integration.

When the correlation length is much smaller than Ao’ the statistical func-

tions in (23) vary much more rapidly with A;t than the electromagnetic functions.

In fact, the statistical functions go from completely correlated to completely

®1c is difficult to describe a surface having L << Ao with a few short words.
"Uniformly rough" is appropriate when the correlation function is a Gaussian
function of the form exp(-TA?tlzllz). In this case the surface height spectrum
is also Gaussian and if £ << Ay then the roughness is spread nearly uniformly
throughout all spatial frequencies f_ko = 21/X,.
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decorrelated over a region of essentially zero measure when compared to the
scale of variation of the electromagnetic functions. Consequently, the statis-
tical functions in (23) may be replaced by their valucs for complete decorre-
lation, i.e. IA;CI + o, with no appreciable error. This implies that the cor-
relation function and all of its higher order derivatives are set to zero in
(22a), (23a), and(23b). Using this approximation and the fact that decorrela-
tion implies staristical inde. endence fcr a Gaussian process, 52 in the expres-

sions for FZ, Tx, and Ty simplifies to the following form [11];

X i _ > -—> e > _ = -<’_2 _ _ ~ _
By (k=B 4B ~B) kyu =By ok =B ) = exp [- <35> (8_-8 ) (B_-k )] B (k-8

n
T 5 @5, (<3
1=2 pl(ki)pl( Si)

where 51(§i) and 51(-§i) are the characteristic functions for V'(. Substituting

these simplifications in (23) and noting that

~ > P 4 ~ n . -
By (ky=B o ky=Byu ek -BL) = By k=B T By GyBD

i=2
it is found that jq(81’§2""’gn) has the following dependence upon éi,i=3,4,-
23 Lyen™ T e
3B By 0B = 5 (86 e, T @y (35)

n .

Using this in (23) and dividing out the common dependence upon T pl(ki) results
i=2

in the following two coupled equations for the current components;

- P, (k;-B,)p (-B.){ 3.8, ,B,) exp L:g2>k B. + <C2>k 8 ]
(2“)3 11 1M1t T2 x"1*72 X 2x 2x y 2y 2y

(2

121224

2 % . 2 -
- jx(Bl’SZ) f[j<z;x )Bzxgx-J <Cy >k2y y + SC]X dBO

2 49— >
-jy(el.éz)f[j<cx><k2y+Bzy) g, ] X deo} ag, 48,
X 2 X ~
= ZHO[Cx - 155>k, € ]pl(kl—kiz) (36a)
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.P'————_——'—__'—_—_j

1 ~ ~ 4 . - 2 2 i
2my> ff Py (k=8,)p, (=8,) {Jy(ﬁl,ﬂz) exp [<Cx >ky Boy * <y >k2y82y] :

I S N g 1<
-jy(Blﬁz) f [— Iy kg By ¥ I<C 7B, 8y ¥ g,’]xdﬁo

gl

8. ,8.) [j<t;2>(k +8 )E]ids dg.dB, = 2H [(I-V-j<r,2>k c-"];“a(k -k, )
172 x 2x  "2x’ Py o 1772 ol 'z x 2x x1F1°71 Tiz
(36bh)
where the triple tilde symbol over the Green's function derivatives denotes the
three-dimensional Fourier transform with respect to Ax, Ay, and A;. The func-

tion X is given by
- -2 2
= @) Texp [ -<g7>(B -8,)(B -k )]

Expanding the exponential factor containing k2x and k2y in a series and equating
like powers of k2x and k2y on both sides of (36), it becomes clear that

j (B ,§ ) may be expressed as follows;
q 1’72

W (2) : 2

3,88y = {37 888,088, + 37 868, 06" 3, ) Fam)
37

&) @ g st (¢ 2

8.8y = {357 868,066, ) + 3P 36" e, 868, b2

Substituting these results in (36) and equating like coefficients of k2‘ and

k2y yields the following four equations for the Bl—dependent parts of the trans-

formed current;

LMy k-8t -—2— | 3 exp[-<z3 B -6.) (8 - =20 ¢% . (k.-
o qu (8))py (kg 81){1 om? fgﬁ exp[ <ET> (BB ) (B kl)]dso}de1 2H € p, (k =k, )

(38)
(z) R ¢ ) z -<z (B - -
f (B + g 3y B f 8,0 exp[-<c> (8,8 (8 -k)] ar,

(1) 2 2 _ 3
NG )f 8y exp[-<th> (8 -8)) (B k)] dso} a8y =~ 328 €L B (k=) (39)
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where q and q' are paired as q=x, q' =v and q=y,q' =x. Using (37) in (21),
(5), and (8) shows that the part of the current which depends upon 6'(32q) con-
tributes nothing to the average scattered field which from (5) may be expressed
as follows;

s > A -
> = { - . , 0y
<Es(ksz) Rl konog(Ro)é(kst kit)[ks xk XTq(kSZ)] (40)

where for q =x or vy,

- 1 (D ~ _
Lq(ksz) = o qu (kl) Py (ksz kl)dkl (41)

and ksz="kiz because of the specularity of the average scattered field. Sub-

stituting (41) in (38), combining Bl(kl—Bl) with the exponential term {11], and

noting that

¥ B
g8.(8 ) = j 47 lim ;’

o €+0 87 - k.© + j¢
(o] 1z

yields the following integral equation for Tq(k) :

. b
T = Ge (5 A\'N -k l i ___..__9.___._ 3 - 8
L0 = 28 (80 G xRy 1B Gk ) + fé:;[sg “%22“'5] b (k=B )T (B)AS,  (42)

Both (42) and some of the interim results leading to it have significant
implications. ESEEL_(BS) and (37) imply that the product of the surface cur-
rent and /1+Cx2+ cyz may be divided into two parts with one part totally inde-
pendent of the surface height derivatives, Yz . It is tempting to declare
that the other part depends linearly on one of the slope components since this
woula appear to follow from the 6'(82q) in (37) and the Fourier transform rela-
tionship between Jq and jq, see (11) and (21). However, it is not clear that

such a Fourier inversion uniquely recovers the true stochastic nature of the

>

current, i.e. the true dependence on Ty - This simply says that one cannot,
> A

in general, go from jq back to Js'q .

Using (38) and (39) and the fact that C;(= - Cz , it can be shown that

(2) = (2) ~ )
fjx (8,05, (k=8 )dB, =—ij (8,05, (=B )dB, 3
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and that j§2)(81) can be determined from knowledge of Tx(k) according to the
following;
@) ¢,
1 2 ~ _ . X ~ B 1 _ Tz
27 fjx (B (k=B )dB) = = J2HL py(ky-ky ) + 5 (kiy kix o X )
2

1 ~
. lim { — —— ) p, (k=B )T (B )dB (44)
f€+0{802_k2 +j€} 11 0" 'x o 0

iz
(2)

for C;x # 0. It is important to realize however that j contributes nothing

(2)
q
square scattered field will be left to future investigations.

to the average scattered field. Discussion of the effect of j on the mean

Equation (42) is very similar to the integral equation obtained by DeSanto
[6] for this "uniformly rough" surface limit. It differs in that DeSanto ob-
tains a Bo in the denominator of the kernel of the integral term rather than
in the numerator as in (42). However, DeSanto's integral equation results from
only the first term in his diagrammatic hierarchy of equations whereas (42) is
exact. It is therefore not surprising that the two integral equations differ. ]

At the beginning of this section, it was stated that the gently undulating
and uniformly rough surfaces are very important limiting cases. Although it is
difficult to prove mathematically, there are strong physical agruments to suggest
that these two cases provide lower and upper bounds on the average scattered
field. That is, for a fixed height variance, <Cz>, the gently undulating sur-
face gives a lower bound on the coherent field while the uniformly rough surface

yields the upper bound. As noted previously, the gently undulating surface be-

haves as a randomly elevated plane which, in turn, puts all of the randomness

of the surface in the phase of the scattered field. Upon averaging over an en-
semble of scattered fields, the randommess of the phase leads to a maximum
effect on the mean scattercA field and, consequently, a minimum value. As the
surface approaches the uniformly rough case, the randomness of the surface no
longer appears totally in the phase of the scattered field due to multiple
scattering on the surface. This is just a restatement of the fact that the phy-
sical optics approximation is not accurate for surface features having an undu-

lation frequency which is small compared to ko. Thus, once the correlation
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length of the surface exceeds the electromagnetic wavelength, the effects of
the random height on the phase of the scattered field are minimized. Conse-
quently, this should lead to a maximum coherent scattered field.

One final interesting facet of these two limiting cases is the points which
they share in common. Both cases depend only on the 3g/3§0 term in the integral

in (10). For the gently undulating surface the contribution from this term is

essentially zero. For the uniformly rough surface this term encompasses all
of the multiple scattering that is important to the coherent or average scattered

field. A second point of commonality is the fact that the currents which con-

tribute to the average scattered field®are independent of all the surface height

derivatives. These facts form the basis for an approximate approach to solving

(42) which is detailed elsewhere (12].

0For the gently undulating surface, this is the total current while for the
wniformly rough surface it is only a portion of the current which contributes
to < s>o
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New Results on Coherent Scattering From

Randomly Rough Conducting Surfaces
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Applied Science Associates, Inc.
Apex, North Carolina 27502

Abstract

An approximate solution for the average field scattered by a perfectly
conducting randomly rough surface having a correlation length much smaller than
the electromagnetic wavelength is presented. The analysis is based on the use
of a substitute surface which gives rise to the same describing equations as
the true surface relative to the average scattered field. The substitute sur-
face comprises large, non-overlapping, flat areas having random elevations
with respect to the mean planar surface and arbitrary correlation between
adjacent areas. The average scattered field is shown to depend upon the number
of interacting areas and the surface roughness. For a given range of surface
roughness there is a specific number of interacting areas which dominate the
average scattered field. It is demonstrated how this number can be computed
and how a continuous curve of average scattered field as a function of surface
roughness is obtained. Of particular importance is the quantitative correspon-
dence established in this paper between the surface roughness and the degree

of multiple interaction on the rough surface.

Introduction and Summary

Single scattering approximations have served very nicely to illustrate
some of the salient features of scattering from randomly rough surfaces [1].
There is, however, a lingering controversy as to how far these approximations

can be extended [2]. The basic problem associated with establishing the range




of validity of these approximations is that the next order correction is very
difficult to obtain. A number of solutions have been presented which are for-

mally exact but are practically limited to a two-~term perturbation approxima-

tion [3,4]). The ploneering work of Zipfel and DeSanto [5] provided the first
approximate correction to single scattering theory which did not require a
small perturbation in the surface height. Subsequent numerical work by DeSanto
and Shisha [6] showed that, for a Gaussian distributed surface, single scat-
tering grossly underestimated the strength of the average scattered field for
large surface roughness and small correlation length. Unfortunately, the
detailed mathematics essential to obtaining this correction to the single
scattering approximation did not lend itself to a straightforward physical
interpretation {7].

Recently another approach to the rough surface scattering problem has
been developed [8]. Apart from starting with the magnetic field integral
equation, the unique feature of this approach was the conversion of averages
to convolutions in stochastic transform space. The purpose of this new approach
was not to duplicate the excellent work of Zipfel and DeSanto but rather to
obtain a solution which clearly illustrated the range of validity of approxi-
mations necessary to simplify the full-blown problem. One of the results of
cthis effort was the derivation of an exact compact integral cquation for the

average scattered field in the case of a surface having a correlation length

much smaller than the electromagnetic wavelength. This equation was similar
to the approximate integral equation obtained by Zipfel and DeSanto [5]). In
(8] it was shown that the average field scattered from a randomly rough per-
fectly conducting surface was attenuated from its flat surface value by the
quantity -f(k”ksz = -kiz) where ksz is the z-component of the vector wave-

number in the scatter direction and kiz is the z~-component of the vector
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wavenumber in the incidence direction. The condition ksz--kizresults from the

specularity of the average scattered field. For Gaussian surfaces having a corre-
lation length (&) much smaller than the electromagnetic wavelength (Ao), the
exact equation for Tq(k) was found to be the following;

k) = 2H [q+(2 *R)] p, (k=k ) + i 1i —°——f§L’°—- p, (k=B )T (B )dB 1)

Tq( otd P iz T 6*2[82—k.2+je‘]p1 o’ 'q "o’ "o (
o iz

where Ho and h are, respectively, the amplitude and polarization of the mag-~
netic field incident upon the surface. In (1) q is either x or y and Bl is the
Fourier transform of the surface height probability density function.

A slightly different form of this equation (with Bo in the denominator
of the bracketed term rather than in the numerator) was solved numerically by
DéSanto and Shisha [6] and it would appear to be a straightforward task to
apply their technique to (1). However, this writer has some concerns about
using the same technique to numerically solve (1). First, although the dif-
ference between (1) and the equation solved in [6] may appear to be minor, it
is likely that the difference may significantly alter the convergence properties
of the integral in (1). This, in turn, leads to the distinct possibility of
singularities in Tq(k) for k.#-kiz which could not be accounted for using the
quadratic spline technique employed in [6]. 1In short, the numerical solution
of (1) may require a great deal more in-depth analysis than presented in [6].

Finally, there is a very practical limitation contained in a numerical
solution of (1). Assuming that a suitable techniéue can be devised for solving
(1) numerically, what one ends up with are numbers! While these numbers are

certainly important, they add nothing to our understanding of the complex

process of multiple scattering. If real progress is to be made in moving
beyond our present knowledge, it must come from a clear understanding of the

physics of the problem and not just numbers. Consequently, considering the
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potential difficulties associated with a numerical solution of (1) along with
the limited iusight available from such results, there is a definite need for
an alternate solution of this problem. The purpose of this paper is to present
one such alternate approximate solution.

The cornerstone of the new solution is the previously derived [8] similar-
ity between the stochastic Fourier transform of the total current induced on
a gently undulating surface (2,>>Xo) and the part of the stochastic Fourier
transform of the current induced on a uniformly rough surface (2,<<Ao) which
is responsible for the coherent scattered field. That is, both of the trans-
formed quantities have the same dependence on all surface height derivative
statistics and they satisfy exactly the same reduced form of the transformed
magnetic field integral equation. This similarity suggests that if the gently
undulating surface (2.>>Ao) could be altered so that, from a mathematical point
of view, the case of 2 << Ao could be addressed then this altered surface could
be substituted for the uniformly rough surfaceo. Furthermore, if this substi-
tute surface 1s such that its scattering properties with respect to the aver-
age field could be determined then these results would apply also to the uni-
formly rough surface. The key to success in such an approach is assuring that
the substitute problem can be solved more easily than the original problem

and that the results are in complete agreement with the physics of the problem.

The transformation of the gently undulating surface (2,>>X0) into a sub-
stitute surface for the uniformly rough surface (& <<Ao) proceeds as follows.
Because of the smallness of the surface slopes, curvatures, etc., the gently

undulating surface may be approximated by an infinite number of large

.It is assumed that the original similarity between the transformed currents
is invariant under the alteration process.
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non-overlapping conducting areas which are flat (non-inclined) but randomly
elevated with respect to the z=0 plane. The current induced on any one flat
area is, however, determined by only a finite (but unknown) number of neigh-
boring flat areas. An exact determination of the current on the rough surface,
in this approximation, is possible and it is found to depend upon the relative
elevations of the non-overlapping areas in a rather simple and physically
meaningful manner. The complex amplitude of the average scattered field is
obtained by averaging the product of the random height dependent part of the
current and the Fourier kernel exp(j ksz z) where ksz is the z-component of the
wavenumber vector in the scattering direction and { is the random surface height.
In order to accomplish the field averaging one must have knowledge of the
joint probability density function for the heights of the electromagnetically
important neighboring areas. This, in turn, raises the question of the degree
of correlation between these areas. Thus, it is at this point that total !
decorrelation may be inserted to complete the similitude between the substitute :
surface and uniformly rough surface, i.e. since £ << Ao the uniformly rough sur- !
face may be approximately characterized by £ = 0 or complete decorrelation.
The substitute surface therefore comprises an infinite number of large non-
overlapping conducting areas which are flat but randomly elevated and uncor-
related with each other.
In the case of surfaces for which decorrelation implies statistical inde-
pendence (such as a Gaussian) the final result reduces to one integration which
can be accomplished numerically. Not surprisingly, the average scattered field
is found to depend upon the number of areas or regions on the rough surface
allowed to interact with the point in question. For a fixed number of inter-
acting areas, there 1s a specific range of roughness or Rayleigh parameter

for which the average scattered field is a maximum. As the roughness decreases
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toward zero, the number of interacting areas on the surface which maximize

the scattered field also approaches zero. Conversely, as the roughness in-

creases the number of interacting areas necessary to maximize the average
scattered field increases. In terms of the physics of the scattering process,
these results have a very clear meaning. In essence the solution comprises

a discrete approximation to the fact that, as the surface roughness increases,

the current at any point on the surface is dependent upon an increasing area

of the surrounding surface due to multiple interaction and not just the behavior

of the surface in the immediate vicinity of the point in question. This result
represents progress in the understandinrg of scattering from rough sur-
faces in that it is the first time that the complicated mathematics of mutual
interaction have been simplified to the point where the result can be put into
one-to-one correspondence with the physics of the process. '
Numerical results for the strength of the average or coherent scattered
field are presented for the case of a Gaussian distributed surface. These
results show a significantly stronger coherent power for large surface rough-
ness or Rayleigh parameter than is predicted by single scatter or the physical
optics approximation. The apparent reason for the failure of the single scat-
ter approximation is as follows. The single scatter or physical optics approxi-

mation attributes the effect of the surface roughness to a phase modification

which, when averaged, tends to maximize the effect of the roughness. For

L << Ao’ the solution obtained in this paper shows that mutual interaction
gives rise to the same phase modification as obtained with single scatter plus
an additional amplitude effect. However, this amplitude effect deemphasizes
che influence of the surface roughness as predicted by the phase only approxi-
mation. This result also provides some insight into why iterative or "back and

forth” multiple scattering attempts to solve the problem are successful only

if the iterative series can at least be partially summed. That is, such attempts
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lead to series terms which contain, primarily, a phase perturbation; thus, no
single term or any finite sum of terms can possibly describe the important
amplitudes effects found in this paper.

A comparison with the results obtained by DeSanto and Shisha [6]) is also
presented. While there is agreement in predicting a greater average scattered
field than single scattering for large surface roughness, there is also a dif-
ference in the detailed behavior. This is not surprising given that the
DeSanto and Shisha result stems from only the first integral equation in an

infinite hierarchy of integral equations.

Determination of the Surface Current

The rough surface provides the boundary between free-space and a perfectly
conducting medium and it is assumed to be infinite in extent in the x and y
coordinates of a conventional (x,y,z) coordinate system. The random surface
height Z(x,y) measured from the 2z = 0 plane is assumed to comprise a zero
mean statistically homogeneous process with the mean surface equal to the z =0
plane. The magnetic field integral equation [10, pg. 354] for the current
38(;) induced on the surface at a point ; = xx + y§ + £z due to an incident
magnetic field of the form Ei(;) = Hoﬁexp(-jlii';) may be expressed in the
following form [8];

3@ = @ <@ + ﬁf{[ﬁ(?)-vog]ﬁ(?o) - BHIE)] vog} d}'t (2)

[o]

where 3(;) is related to 38(;) by

—

3@ = Y1+ Guan? + @u/ey)’? Jm




i:i = -ko [sinb cosp %X + sinBsind § + cosh z]

where © 1s the angle of incidence with respect to the normal to the mean sur-
face, ¢ 1is the azimuth angle measured from the x-axis, and ko = zn/Ao is
the free-space wavenumber. The quantities ar/ox and 3r/3y are
the x and y components of the surface slopes at the point T on the surface,
;t = xoﬁ + y°§ , and g(l; - ;OI) is proportional to the free-space Green's

o
function, 1.e.

exp( - j kol;- ;ol)

F- 1,

-> >
g(fr - r )= (3)
Using the fact that the current must be orthogonal to the surface normal, i.e.

ﬁ(;;) 03(;;) = 0 , leads to the following relationship between the vector com-

ponents of the current;
-+ + . ->
Jz(ro) =(3Co/3xo) Jx(ro) +(350/8y0) Jy(ro) (4)

Using (4), it can be shown that the term [ﬁ(;) °}(;;)] in (2) is proportional
to the difference between the surface slopes at the points T and ;o on
the surface. This term contributes nothing to that part of the current respon-
sible for the coherent scattered field for either £ >> Ao or £ << Ao [8] and

so (2) reduces to three scalar equations or, alternately, (4) and the following
two expressions;
-
A 8
3, = 28 ®D « WO+ E [ {323

o X 3x
o

gl
Lo

. dg , 98 P

(¢}




where q = xor y and 4 1s a unit vector in either of these directions.

The slope dependent terms in (5) also can be shown to contribute nothing for

either case [8] and (5) becomes

> i+ _1_ _Qg_ > >
Jq (r) = Jq (r) + T fa;o Jq(ro) drt (6)

(o]

for q = x or y and Jq (r) = 2q-{z x H' (r)]

> > 2 2
The argument of the Green's function in (6) is vqrt -T, [+ (C"Co) .
o .

Starting with the gently undulating surface (2,>>Ao) and using the fact that
the surface curvatures and slopes are very small implies that the quantity

(T -co) is nearly a constant over a large range of ;t . Thus, (6) may be
o

approximated as follows;

M f ag(;t -—;t ’C'Cn)
> i » 1 Z n > >
J zJ - — J d 7
q(r) q (r) - 35 3 (-2 q(rn) rtn (N

n=1l A
n

where An is the area of the z = 0 plane over which 7 - Cn is nearly con-
stant and M+l is the number of these areas which make up the entire z = 0
plane. To include the entire z = 0 plane in the integration in (7), M should
be infinite; however this ignores the fact that only a finite area about the
point (;t,c) is effective in determining Jq(;t’C) . Consequently, M will be
replaced by N which is assumed to be finite.

In essence (7) is a discrete approximation to (6); retention of the inte-
gration in (7) merely reflects the fact that (E-Cn) is constant to some
prescribed tolerance over an area An and not just a point. Defining Sn(;t )

n
>
to be the support function for the nth area, i.e. Sn =1 for r, €1An and

n
zero otherwise, (7) may be rewritten as follows;

i -+ +
: N ag(rt-rt L -Cn)
> -», -+ g -
SNOERRCE £ n 3 @S, () df (8)
n=l e a(z “Cn) n n
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where C-Cn is assumed to be constant or independent of L. Figure 1

n
illustrates what has been done to the surface in going from (6) to (7). In

essence the continuous surface has been approximated by a non-overlapping col-

lection of discrete flat areas which are all parallel to the z = 0 plane.

The derivative of the Green's function may be expressed in terms of a

two dimensional inverse Fourier tramnsform [5];

-»>
38 (AT, L0z)

1 41 ) 2 > 2 > -+ T
_ 1 > 5 fsgn(ACn)exP['JV ko’{k;[ IACu' - Jk;'Arth dk, 9)

8L 2m)

where Acn =7 - Cn ’A;tn = ;t - ;tn and the signum function is defined as
follows; i
1 Agn >0
sgn(8g ) = 0 Az =0 |
-1 Acn <0

It is known that the average scattered field is specular (9,81 . This
=S
means that after averaging Jq(t) over the stochastic height g , the re-

>
sulting dependence of the averaged current on r, is of the form

¢ it ix

dent wavenumber vector. In general, one cannot infer this particular func-

> > >
exp (- ik °r ) where k, =k X+ kiy9 is the transverse part of the inci-

tional dependence before averaging because ¢ is a stochastic variable, i.e.
=
C(rt) . However, in the case of (8) where [ and Cn,n =1,2,...,N , are

<>
taken to be independent of r, (because (8) represents a discrete approxima-

tion to the continuous surface) the following form is correct;

g 'rt) (10)

J1.(®) = j(x) exp (- jK
9 t

Substituting (9) and (10) in (8) and performing the integration over ;t

yields the following result;
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N
3@ex (- Jkg T = I D exp -3k T gk D) - Y 30 seniar)
t z

n=1

~ > -+ 2 > 2 L > > > > >
. fsn(k¢-kit) exp {- Ik, - Ik i [ag | - gkyer + 3(ky-ky der, }kob
t n
0
(11)
where qu = 2H_ a-[2><ﬁ), §n(') is the Fourier transform of the nth support,
and ;tn is the vector distance from the origin to the centroid of the nth
o
flat area projected on the z =0 plane. The curvatures and slopes of the continu-
ous surface are taken to be so small that each of the discrete flat areas
An,n=1,2,---,N, have linear dimensions which are large in terms of a wave-
length. Thus, the Fourier transforms of the support functions (§n) will be

> >
very peaked about k*:=ki and they are approximated by delta functions. Accom-
t

plishing the i*-integration and dropping the common exp(—,jiit'¥t) dependence

vields ]

N
1) = 30 exp- 1k, ) - D 1@ smEL) em Yk, Iag ) A

n=1

which is the equation that must be solved to find the current.

Before continuing on with the solution of (12), it is wise to review the
essential rationale which permitted the simplification of (6) to (12). The
first step entails the observation that the current at the point (x,y,7) may
be effectively determined by its interaction with the current at an unspecified
number of other points (xn,yn,cn), n=1,2,---,N, on the surface. In view of the
very slowly undulating nature of the assumed surface, these N interacting points

are approximated by large flat areas (see Figure 1). The elevations of these

areas, namely [ and ;n,n-1,2,'-',N, are random but independent of the transverse

spatial coordinates ;t and ;t . As a result of this and the specular nature
n

of the average scattered field, the dependence of the current upon the transverse
3-11
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coordinates ;t may be inferred directly as in (10). Finally, the height depen-
dent part of the current is found to be a solution of (12). In essence, (12)
relates the current on the area at an elevation f to the currents on the areas
at elevations ;n,n=1,2,...,N.

As a first step toward solving (12) it should be noted that if there are
no additional areas of interaction, i.e. N=0, or if the other areas are at the
same elevation as the area at [, then

3@ = I g exp(- ik, D) (13)
which is the correct result for a single randomly elevated plane. Of particu-
lar significance here is the fact that (13) is independent of exactly how the
limic of a single plane is achieved. That is, the proper limit is obtained
either by allowing no additional areas (N=0) or by forcing all of the inter-
acting areas to coalesce into one plane (;n-+;,n=l,2,---.N) . Equation (13) is
also recognized to be the physical optics or single scatter approximation for
the height dependent part of the current.

The most straightforward approach to solving (12) is to start with one

additional area (N=1) and then build on this result. For N=1, (12) becomes

i
3@ = J e -ik; 8) - §(5)) sgn (2 -5)) exp (-5 k, lT-7 D) (14)

which relates the current on the area at z =77 to the current induced by the

incident field and the cirrent on the area at z =C1 . Rewriting (14) for the
two regions c-—;l > 0 and C-—Cl < 0 yields
= i -3 - - -7 F o=y > (14
3@ Jqo exp(-3 k; 0) j(Cl) exp (-1 kg, [¢ L) L-fyp 0 {14a)
and
i .
= - ) z 3 - I =7 <
3@ Jqo exp(- k, &> + 1 Dexp (3ky [L-25,1) L= hp 0 s
By inspection of ."se two equations, the following solution is ubtained;
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jegy = 3t

qo €*P (-1 kiz C)U(—Acl) (15)

where Acl = ;-—Cl and U(*) 1is a unit step function defined as follows

0 A§1>O
u(- Acl) = (16)

<

1 Acl <0

(the fact that U(- A;1)= 1 for Ac1.=0 follows from the appearance of the
signum function in (14) and its definition at AC1'=0). In verifying that

(15) does indeed satisfy (14), one must be careful to reverse the roles of

and Cl when substituting for j(Cl) , i.e.
i
1@ = Jqo exp(-Jk; Z,)U (AL))

Having found the solution of (12) for N=1, it is a straightforward task
to verify that adding more interacting areas simply results in multiplying (15)

by more unit step functions. That is, the solution of (12) is as follows;

N
3 = 30 exp(-1k;,8) AT UG, -0) an
n=1

This is an interesting and not altogether unexpected result. According to
(17) only the lowest elevated area will support a nonzero current. For
example, if the Z-boundary is the lowest then Acn >0 for n=1,2,...,N and
j(z) 1is just the current due to the incident field. Conversely, if - is
the lowest then j(ci) will equal the current due to the incident field and
all of the other boundaries will support zero current. If there is no current
on a boundary then the boundary produces no scattered field and so, for all
intents and purposes, the boundary does not exist. Thus, (17) predicts that
for any realization of the random boundaries, only one (the lowest) deter-

mines the scattering from the surface. This result is entirely reasonable
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because in discretizing the original integral equation, i.e. (b), the problem
was recast into N+1 interactirg perfectly-conducting large creas, each having

all the characteristics of a conducting half-space boundary. Having accom-

plished the mathematical solution correctly it is found that, for all intents
and purposes, only one half-space boundary exists for any realization of the
randonly elevated surface. Thus, the only consequence of (17) which does not
have an immediate physical explanation is the fact that it is always the
lowest boundary which gives rise to the scattered field. Unfortunately, no

physical explanation for this particular result has been found.

The Average Scattered Field

To rthe degree of approximation provided by the Fraunhoffer diffraction
integral, the far-zone scattered field in the direction Es and at a distance

R from the mean surface is given by

el gmykoxkx b¢3 jk, T, + jk dr 8
B, = J 7 s(®R) k_Xk_ (ry Jexp (] s, Tey jkg, &) Ay (18)
m= m m
An
> > ~ ~ i . .. _ . .
where kS’=kst+ksz z koks, n, is the impedence of free-space and g is given

by (3). The sum is over all M+1 flat areas comprising the total discretized

surface and (CO,AO) represents the flat area having a height { and area A.

Consistent with the previous stipulation that Am >> Xi , (18) reduces to the

following
- ~ A ~ A
E =] 21k n, B, g(R) [ks st x(zxh)}§ (ksx-kix) 8 (ksy—kiy)
M
. z 3(5y) exp [5Gk k)T ] (19)
=0

N
1f cm=-o,m=o,1,2,~--, this expression for Es is too large by the factor M+1;

this error results from treating each AIn as essentially infinite and it can be
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rectified by dividing the rhs of (19) by M+1. Taking the average of the cor-
rected version of (19) and noting that the average of j(f,m)exp(jksz cm) is

independent of m yields

<E> = 32mk n K g(®) lieg ¥k x xR 8 (k ok ) 8 (k k)

iy
r{I@) exp 3t~k )T 1> (20)
where
exv(-jkiZC) N=0
i@ = (21)
N
exp (-3k, ) ;l;rl U@ -o) N> 1

The factor multiplying the <+> term in (20) is identical to the average scat-
tered field, E;ﬂ for the case of a plane located at z=0 in the far-field
approximation. Thus, <§s> has the same direction as E; and it differs in com-
plex amplitude by the term <*> in (20). Since the scattered field {s specular,
sz z iz

k =tkiz and for the field in the upper half-space (free-space) ks = -k, ;

thus, (20) becomes
<ES>/ES° = <j (Cyexp[ -j 2kizt;]> (22)

where k, =-k cos6 .
iz (]

For N=0, (22) yields the following result;

<Eg/ES> = By 2|k D) 23)

where 51 is the characteristic function of L . For N > 1 , there results
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<E_/E2> = fexl:(j2|kiz|€) ff...fp(cl.c?_,.--,cN,c)dcldcz---ch de,
z

- C (24)

where p(Cl,Cz,...,CN,C) is the joint probability density function of the

indicated random variables. This result for the relative strength of the aver-
age field involves two parameters - tne degree of correlation between the
non-overlapping areas and the number of areas which are important to the scat-
tering. According to the similarity obtained in [8] and reviewed in the first
section of this paper, total correlation represents the gently undulating sur-
face (9,>>A°) while complete decorrelation now represents the uniformly rough
surface (%<« Xo) limit. When the areas are all correlated, it can be shown
using conditional densities that (24) reduces to (23) independent of N. This
is as it should be because for 2,>>Ao (24) represents the case of essentially
a randomly elevated plane. When the non-overlappinyg areas are uncorrelated,
(24) is very highly dependent upon N as should be expected since this repre-
sents the case of very strong mutual interaction on the surface. This, of
course, is simply a reiteration of the fact that as the flat areas become
decorrelated the mutual interaction effects on the surface increase. The re-
mainder of this paper will be devoted to understanding and quantifying the
importancg of N for the case of uncorrelat: surfaces (& << Ao).

For an arbitrary joint density function representing uncorrelated heights,

it is difficult to simplify (24). What is happening here is that the mathe-

matics of probability theory are beginning to cloud the physics of the process.
To overcome this limitation, consider the case where decorrelation implies
statistical independence. For a statistically independent process, the joint

density factors into a product of the marginal densities, i.e.
P(Tistyseeeslysl) = PEIP(T,). . .p (5 )P (T)
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The cn-integration in (24) may be rewritten as follows;

o

Z
fp(r,n)dcn -1- fp(c,,)dr,n = 1-F@)

g

where F(Z) 1s the common distribution function for C'CI'CZ""’CN ; that
is, all the random elevations are identically distributed because of the

statistical homogeneity stipulation. Thus, when decorrelation implies sta-

tistical independence, (24) simplifies to the following form;

<E_[EZ> = fexp(: 2lk, | Dp@ - F@ 1N (25)

Since F(-®) = 0 and F(+~) = 1 , the =ffect of the N interacting areas on

the surface is to skew the integrand toward the negative range of I in (25).
Unfortunately, it is difficult to proceed beyond this general result without

a specific form for p(Z) and F(Z) for two reasons. First, it is diffi-
cult if not impossible to find a meaningful form for the integration in (25) for
arbitrary p(Z) and F(Z). Second, and more importantly, is the simple fact that
there is no formula for determining the effective number of interacting areas N;
it must be determined by computing (25) as a function of N and rationalizing

the results with the physics of the rough surface scattering process.

Numerical Results and Interpretation

For Gaussian surfaces (the only class of surface statistics for which the

similitude has been proven [8]), the marginal density is

p(g) = —1 exp (~ c2/2<c2>)
n<;2>

and
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1-F() = % erfc(;/¢z<;2>) (26)

where <C2> is the mean square surface height and erfc(+) is the complemen-
tary error function. Substituting these forms in (25) and introducing the

normalized variable n = g |/£<C2> yields;

<Es/E;> = —/1"? fexp(j 2/2 T n —nz)[erfc(n)/Z]N dn 27

where L = |kiz]y/<r,_2>— = koéc_z; cos 8 1is the Rayleigh parameter. For arbi-
trary I , this integration is straightforward but must be accomplished
numerically. For I=0 , the integral can be shown to vield 1/(N+l);
consequently, as N increases (27) monotonically decreases. Figure 2
illustrates the behavior of the magnitude of the average scattered ‘ield as a
function of I for N=0,1,2, and 3. Of particular note here is the fact
that the curves begin to flatten out as both I and N increase. This figure
also shows a very interesting result; for N=0, 1, and 2 there is a specific
range of I values for which each curve provides thz maximum average scattered
field compared to all the other curves (for N=0 the range is 0<Z<1 ). Fig-
ure 3 shows a plot of N values as a function of the corresponding L range

over which the average scattered field is maximized. That is, for each value
of N and L corresponding to a point in Figure 3, equation (27) is maximized,
i.e. any other N will provide a smaller value for (27).

In order to appreciate the implication of this result it is necessary to
recall the meaning of N. As simulated in this analysis, N represents the effec-
tive number of uncorrelated areas on the surface which interact with the refer-
ence point on the surface. Equation (27) describes the influence of these

N-area interactions on the coherent scattered field as a function of the

3-18




e A

Rayleigh parameter or surface roughness. From a physical point of view, one
should expect that for small roughness each point on the surface scatters
independently of all the other points; hence, this corresponds to the N=0 or
no interaction. As the surface becomes rougher, it is certainly reasonable

to expect that the region of interaction on the surface should increase; hence,

N should also increase. With this bit of simple physics in mind, it is now
possible to interpret the results in Figures 2 and 3. In essence, Figures 2

and 3 show the range of I values for which a given number of interacting areas

on the surface are dominant or are most important to the scattering process.

Figure 3 shows that for <5 , N varies very nearly as 23. Hence, the number
of interacting points or regions on the surface is increasing as the cube of
the roughness. To the author's knowledge, this is the first time that such
a direct correspondence has been demonstrated.

It should be noted that the parameter N may be interpreted {11] somewhat '
differently than presented above. Although this secondary interpretation
does not follow directly from the analysis presented here, it would certainly
seem to apply to the original uniformly rough surface. In particular, the
parameter N may be thought of as the number of additional reflections that an
incident ray undergoes due to multiple scattering on the surface. From this
point of view, each value of N is clearly only dominant over a limited range
of roughness [l11]. Furthermore, this analogy provides an alternate reason-
ing for moving from the N=n° to the N=n° +1 curve in Figure 2 as the Rayleigh
parameter increases. That is, once the N-no curve drops below the N =n, +1
curve in Figure 2, this signifies the need to include more multiple scattering
or ray reflections on the surface. This interpretation and the results in
Figure 3 imply that the order of multiple scattering or the number of ray
reflections on the surface increases as the cube of Rayleigh parameter.

Clearly, this interpretation is synonymous with the increasing area of
3-19
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interaction on the surface.

Given the above rationale for selecting N as a function of I, how then
does one construct a continuous curve of the average scattered field as a
function of T ? A technique that has been found to be relatively fast is the
following. One chooses three contiguous values of N and computes (27) as a
function of I for each of the three values. One then finds the value of I
which maximizes (27) for the middle N and this provides one point on the
plot of average scattered field strength versus L . Tﬁ;s process is continued
until a smooth curve car be drawn through the points. Because N varies as
the third power of L , the maxima of (27) are very close together and so not
many points are required before the trend of the maxima can be established.
The only point where there will be some degree of interpolation required is
near the transition from N=0 to N=1.

Figure 4 compares (27), as computed according to the above prescription,
with the results of DeSanto and Shisha [6]. (Both results clearly show a
larger average scattered power than is predicted by physical optics.) The
disagreement is due most probably to the fact the integral equation for the
average scattered field used by DeSanto and Shisha is only the first term in
an infinite hierarchy of integral equations. The solution represented by (27)
is also an approximation because the large flat areas comprising the substitute
surface have essentially been replaced by planes. However, this simplifica-
tion does not significently alter the basic processes responsible for the
effects of multiple interaction on the average scattered field and so it is

reasonable to express a high degree of confidence in these results.

Conclusions
The primary purpose of this paper is to present an alternative approach

to the problem of coherent scattering from a uniformly rough surfaces, i.e.
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surfaces for which the correlation length is significantly smaller than the

electromagnetic wavelength. The motivation for this effort is the need to
obtain a degree of physical insight which is not present in the exact singular
integral equation describing this problem. The approach is based upon the
remarkable similarity [8], with respect to the intermediate mathematical re-
sults, between the stochastic Fourier transform of the total current on the
gently undulating surface and the part of the stochastic Fourier transform of
the current on the uniformly rough surface which is responsible for the aver-
age scattered field. This similarity leads to the replacement of the uniformly
rough surface by a discretized version of the gently undulating surface com-
prising large, flat, non-overlapping, uncorrelated areas. This substitution
is justified by the fact that the stochastic Fourier transform of the current
on the discretized surface obeys exactly the same governing relationships as
for the uniformly rough surface.

A second major step in the analysis entails identifying the effective
number of interacting areas on the discretized surface in terms of orders of
multiple scattering on the surface and recognizing the necessity to monotoni-
cally increase the order of multiple scattering with increasing surface rough-
ness. In particular, it is found that the number of interacting areas on the
surface, or alternatively the order of multiple scattering, necessary to maxi-
mize the average scattered field, varies as the cube of the Rayleigh rough-
ness parameter. The maximum property of the average scattered field is con-
sistent with earlier arguments {8] that the uniformly rough surface produces
a maximum coherent field for a fixed Rayleigh parameter.

The essence of the approach is that of solving a simpler problem which
can be shown to have the same mathematical properties with respect to the

average scattered field as the actual surface, Clearly, it is desirable
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t compare the results obtained herein with a solution of the exact integral
equation for the average scattered field. However, this must await further
study of the integral equation and, in particular, the analytic properties

of the average scattered field for "off-shell" (k # -kiz) conditions.
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Figure Captions

Figure la. Geometry of the rough surface interface.

Figure 1lb. Discrete approximation to the true rough surface in Figure la.

The dashed continuous line is the original surface while the non-
overlapping horizontal line segmets form .the discrete approxima-
tion to the surface.

Figure 2. A plot of the coherent scattered power as a function of surface
roughness for N=0,1,2,&3. Note that for each N, there is a range
of surface roughness for which the coherent power is larger than
for all other values of N.

Figure 3. A plot of the N value which maximizes the average scattered power
over the indicated range of surface roughness. The figure illus-
trates the increasing region of multiple interaction on the surface
as the surface roughness increases. The solid line represents the
relationship N= 23.

Figure 4. A comparison of the coherent scattered power as a function of sur-
face roughness as predicted by single scattering (N=0), DeSanto's
& Shisha's computations, and equation (27). N, or the number of
interacting points or regions on the surface, has been replaced by

a continuous function of I which fits the results in Figure 3.
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Scattering From A Class of Randomly Rough Surfaces
by
Gary S. Brown
Applied Science Assoclates, Inc.

Apex, North Carolina 27502

Abstract

This paper develops new results pertaining to electromagnetic scatter-
ing from perfectly conducting random surfaces for which decorrelation does
not imply statistical independence. Using an exact theory for the current
induced on the surface and the far-field approximation for the scattered
field, it is shown that the incoherent scattered power consists of two parts.
The first part corresponds to the so-called diffuse scattered power. The
second part is specular in its angular dependence and is a direct consequence
of the fact that the two point joint density for the surface height, slopes,
etc. does not reduce to the product of the single point joint densities for
infinite separation distances. Computations for a gently undulating jointly
exponentially distributed surface show that the incoberent specular power is
equal to coherent scattered power for the Rayleigh parameter near ounc. When
the Rayleigh parameter is large, the incoherent specular powcr is sipnifi-
cantly larger than the coherent power. The analysis Further indicates that
scattering measurements provide an ideal way for identifying this class of

surfaces.

Introduction and Summary

Frequently, when comparing measurements of scattering from randomly
rough surfaces with theoretical models there are little or no data on the

statistical properties of the surfaces. This limitation mecans that the
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surface statistics must be assumed. Unfortunately, the choice ot the suclace
statistics is usually based upon analytical convenience rather than reality.
If the assumed statistics are not a good approximation to the actual surtace,
this can lead to erroneous rejection of the theory or expensive additiounal
experimentation.

Recently, Lennon and Papa [1980, 198l1] employed digitized terraion maps
to ;btain estimates of very large scale surface height statistics which could
then be used to predict scattering from the region in question [Papa, et al.,
1980]). Because of the complexity of the theoretical scattering model, it is
not practical to use measured statistics such as joint height histograms
directly in the scattering computations. A reasonable alternative is to "best-
fit" these statistics to a functional form for the joint height probability
density function which, in turn, is amenable to use in the scattering theory.
Since the functional forms for the joint height statistics may be quite gener-
al, scattering theories based upon Gaussian surface statistics are no longer
adequate. Beckmann [1973] has considered the problem of scattering from non-
Gaussian surfaces when the only height data available arc the marginal den-
sity and the correlation function. However, his analyses and results are
restricted to the case where decorrelation of the surtuace height iwplies sta-
tistical independence.

The purpose of this paper is to consider scattering frow surfaces lor
which decorrelation does not imply statistical independence. The wotivation
for this study 1s threefold. First, there is no obvious reason why a real
surface should be statistically independent when it is decorrelated. Alsu,
from a mathematical point of view statistical independvnce is not, in general,
implied by a lack of correlation [Papoulis, 1965]. Finally, there are a

relatively large number of joint probability functional forms tor which
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decorrelation and statistical independence are not synonymous [Lennon and

Papa, 1981) and there is no apparent reason why these should be rejected

a priori when attempting to determine the "best fit" functional form.

The analysis starts with describing the far-zonc: scattered tield by the
standard far-field diffraction integral involving the currcnt induced on the
surface by the incident plane wave and the Fourier phase kernel. Averages
nec;ssary to compute the mean scattered field and its variance are converted

to convolutions in a non-stochastic Fourier transform space [Brown, 1982].

The advantage of this approach is that the spatial dependence of the trans-—
formed current is known and this in turn, implies that the average scatterced
field is specular, e.g. it is nonzero for one and only one scattering angle.
The second moment of the scattered field contains a specular component due to
the nonconvergent nature of the two point joint density for the surface
height, slopes, curvatures, etc. of the surface as the distance between the ‘
two points on the surface approaches infinity. When decorrelation implies
statistical independence, this specular component is exactly canceled by the
subtraction of the square of the mean scattered field; thus, the variance of
the scattered field contains no specular components. However, if the surface
is not statistically independent when it is uncorrelated, the variance of the

scattered field is shown to have a nonzero specular componcant which is depen-

dent upon the difference between the decorrelated joint density and the
square of the marginal or single point density for the surface height, slopes,
curvatures, etc. This result is a simple consequence of the fact that no two

points on the surface scatter statistically independent of e¢ach other regard-

less of the distance between them.
In order to illustrate this effect, a very gently undulating surface

which is amenable to the physical optics approximation for the induced surtace
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current is assumed. The two point joint height probability density tunction
is taken to be exponential and the specular part of the scattered tficld vari-
ance is compared to the square of the mean scattered ficld as a lunction of
the Rayleigh roughness parameter (I). The specular part of the scattered
field variance goes to zero as the Rayleigh approaches zeru; however, as the
Rayleigh parameter increases, it also increases to a peak value in the acigh-
borkood of =1 where it is equal to square of the mean scattered ticld. For
larger values of I, the specular part of the variance greatly exceeds the
square of the mean scattered field; the former behaving asymptotically as

2—3 while the latter goes as 2-6.

The importance of this analysis rests primarily in its implications. If
the Rayleigh parameter is very small (L<<1) or very large (CZ>>1), it is
doubtful that the specular component of the variance of the scattered field
will be measurable. However, 1f the geometric and electromagnetic parameters
of the experimental scattering system can be adjusted so that L ~1 then this
specular part of scattered field variance should be detectable. If no specu-
lar part of the field variance is measured then one may safcly conclude that
the sviface is statistically independent when it is decorrelated. A final
implicacion of this analysis is that one should exercisc great carc in tit-
ting arbitrary functional forms for joint probability deusilies to histogram

data for purposes of predicting theoretical scattering trum the surtace.

Scattering Analysis

The stochastic surface z = [(x,y) 1s assumed to be a zero mean statis-
tically homogeneous process. Beneath the surface, the medium is taken to bhe
perfectly conducting while free-space comprises the medium above. A magnetic

*{ + ~ > A
field of the form H (r) = Hoh exp(-3 ki‘t) is incident upon the surface; h is

the polarization of the magnetic field, ii = ii/ko is its dircction of

44




propagation, and ko = 211/)t° is the wavenumber. Although thie far-field scattering
approximation leads to difficulties when dealing with unbounded illuminuation
[Sancer, 1969), these problems can be circumvented by relating the resulls Lo
flat surface "scattering" in the same approximation. With this caveat iu

mind, the far-zone scattered electric field is given by the following form;

kN A A > . >
E o~ t;(Ro)f[kB xk_xJ(r)] exp (j Kk 7) dr, (1)

where n, is the impedance of free-space, g(Ro) = exp(-jkoRo)/Ro, Ro is the

distance from the origin of the surface based coordinated system to the far-

field point, is/ko = ﬁs is the direction of the far-field point of observa-
s

-+
tion, and r.= x; + yy is a point on the z=0 plane. The quantity 3(;) is

defined as follows;
1/2

+ 2

i@ =3 O+ Geen? + ouoy?] 2)
where 35(-;) is the current density on the surface and 9Z/3x and 3Z/3dy are the
x and y slopes of the surface at the point (C.;t). Redefinition of tle cur-

rent as in (2) permits an integration over the z =0 plane in (1) rather than

is given by

- ~ A > -+ . ] -+ -»> >
<Es> = I‘f[ks st x<J(r)exp (j ksz l,)>] exp(j kSt rL)drt &)

>
where &k + ksz'i = ks and the <*> brackets denote an enscmble average over
t

§ all stochastic quantities upon which J(;) depends. With P, (C,2) equal to
the single point joint probability density function for the stochastic vari-

l the actual surface. With T = j konog(Ro)/lm , the average scattcered field
;

]

|

E ables [ and Z , the average in (3) is as follows;

|
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T -
-+ > - > ,
<J(r)exp(jk_ T)> = J(r)exp(jk _T)p, (L,2)dcdz (4)
(-} 4 sz 1
where Z is symbolic of all the surface height derivatives which Jdetermine
> > >
J(r). Since this number is in general infinite, Z stands for V e

[Brown, 1982] and the dependence of these higher order surface derivalives

upon %t is implied. With

> 5 A A > > A A -+
= X X = . -
I(x) =k xk_xI@) = (k Dk -3 (5)
and using (4), the squared magnitude of the average scattered field is casily

shown to reduce to the following form;

<B>|? = |r|® ffffff I@FE em sk, e o, @0p, @20)

. exp[ﬁs . (?t-?t' )]dt;dc'dZdZ' d;td?t' (6)
t

where the symbol * denotes the complex conjugate operation and pl(C',Z')is
not conjugated because it is real. Following a similar development, the
mean squared scattered field may be expressed as follows;

<|E,}?> = lrlszffff{"i(?)-}*(?'>expnksz<c-r,')1p2<c.c'.x,z';Aﬂﬂ

»> e I . e T
* exp jks '(rt-rt ) {dtdi'dzdz drtdrt N
t

where A;t - ;t-;g « The function P in (7) is the two point joint probuabil-
ity density function which depends upon two sets of stochastic variables and
the horizontal vector distance between them.

If the stochastic Fourier transforms are defined as follows;




; > > 5
J(rt.k,l() =ff](r)exp[jklj + jKzZ)dgdz (8a)
iil(k,K) = ffpl(c,l)expljkc + JKZ)dzde (8b)
gz(k.k'.K.K‘;A¥t) = ffff pz(c.c'.Z.Z';A;t)exp[J(kc +jk'g’
+ KZ + K'2')]dzdg'dzdz’ (8¢c)

and it is noted that
> 3 *
F[J*(?t,c.z)] -{ﬁﬂ.—k.—ﬂ} (84)

where F symbolizes the stochastic Fourier transform operation, the integra-
tions over the stochastic variables in (6) and (7) may be alternatively ex-
pressed as convolutions in transform space [Brown, 1982]. The advantage of
this approach is that the new variables of integration, i.e. the transform
coordinates, do not depend upon :t’ ;t' s OF A;t . Rewriting the integrals

in (6) and (7) as noted above yields

<t >|? = ffffff{ur K, K) e J(r | ] Bk, -k,mK)

(2")2+23

e B (~k ~k,-K) Kk o(x -*')]cnuik'dlunz'd+ dr' (9)
Py (kg ko= exp[j g I r dr,

t

and

<|g | >= -J-l—ffffff{uzt,k K). J(‘v ', -K' )1 Pyl —ko-k -k',-K,-K' ;A7
2"’29 sz sZ t

. -+ . > ' 02T 2
exp[jkst (rt rt)]dkdk dKdK drrdrt (10)
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The quantity E; is

33(:) on all orders of surface height derivatives [Brown, 1982]. Thc¢ colier-

ent scattered power 1s proportional to |<Es>|2 while the Incoherent
scattered power is proportional to Var(Es) = <{Es[2> - I<Eb>

variance of the scattered field. Using (9) and (10), the vaviance vf the

scattered field may be written as follows;

Var(E) _U_ffffffJ(t 2K,K)e J(r, K)]{pz(k ~k,-k -k',-K, l\Ar)
2428, sz

-x)il (-ksz-k',-K')}dkdk'deK' dr td?'t (1)

- pl (ksz-k’

In view of (5) and (8a), the stochastic Fourier transform of }(;) is

-»
proportional to the stochastic Fourier transform of 3(r). However, it has

been shown [Brown,

transformed magnetic field integral equation for the current, 3(;t,k,K) must

have the following

where ti is defined by ﬁi = t +k, 2. That is, the stochastic Fourier

t

transform of the slope normalized current exhibits the same dupendence upon

;t as the incident

-+
converting to a Art

ey - L | ] (Sotingomsone)

I - b o Lt % okt AT N R - kv
‘(pz(ksz k, ksz k',-K, K,Art) pl(ksz k,=K) p, ( k,, ks k{}

. exp[jA; “(k -k )J dkdk' dKdK' dAT a3
t s 1, t

-4

equal to 1221 and it results from the dependence of

or the

[2

1982] that, in order to satisfy the stuchastic Fourier

<>
dependence upon .

IE 00 = T Rem 5k, T ) (12)

ice iz

magnetic field. Using (5), (8a), and (12) in (11) and

coordinate yields
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where A is the illuminated area and the summation is over the values q =x,y,
and z.

It should be noted that (13) is an exact result involving no approxima-
tions other than the far field integral description of the scattering pro-
cegs. The function El(-,-) is also called the single point joint chdracter-
1st§c function of the stochastic variables f and Z while 'z'z("' R ;A:L) Is
the .two point joint characteristic function of [,7',Z, and 2'. The importaat
point to note about (13) is that apart from the phase factor only ;2 depends
upon A:'t. The explicit dependence of 52 on A-;t comes about through the sur-

face height correlation function R(A;t) and its higher order derivatives where
-+ > + -+
= < ] ] >
R(Art) g(r' +8r)g(r/)
When IA;tI-*‘” , the correlation function and its higher order derivatives ap-

proach zero and this corresponds to the condition known as decorrelation. If

decorrelation implies statistical independence then

< = n - - g - k! -K?
IA'lr':T"“pz By (kK =K)B) (kg ~k',~K") (14)

or the two point characteristic function factors into a product of single

. e d
point characteristic functions. When this occurs, the Art—intcgruud in (13)

vanishes as IA;tI +» and so it has a finite support. This implies that the

-3

Var(Es) will contain no delta function dependency upon kS -« Thus, when
t

i
decorrelation implies statistical independence, Var(Es) will contain no spec-

ular terms because specularity in the far-field approximation implies a temm

1t.) '

I1f decorrelation does not imply statistical independence then (l4) is

&> >
vhich varies as G(kst—k

invalid and the term
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will be nonzero. The cousequences of this result may be casily seen by cogu-
-’
larizing the Art-integrand in (13) by subtracting and then adding terms con-

taining the above limiting form. This operation leads to the following

Var(E ) = —l%:;—fffff{zu-k 'q]J (k, k)J (-k',-K' )}

{3 “k.=k -k'.-K.-K':Az )-3 Ko<k k' —K kAT s
{pz(ksz ky-k_ -k',-K,-K';Ar ) -p, (k_ -k,~k_ k', k,-k',[Art[—m)}

result;

. exp[jAr (& -k )]dkdk dKRK' dAF

2
+“Lm‘%_5(k -k ffff{iu-k -q]j (k, K)J (-k', K)}
28

@m)~"e

Wk b L' _w kAT _= b _KYE (- LY oy i .
{pz(ksz k,-k_-k',-K, K,IArtl-oo) Py (k ,~k,=K)P, (~k k', h'dedk'dkdh'
(15)

The second term in (15) is clearly specular in its angular dependence and it
is entirely a consequence of the difference between decorrelation and statis-

tical independence.

It might appear that this result is a freak consequence of the unbounded
nature of the incident field; however, such is not the case. The analysis may
be carried through using a plane wave having a finite support (a beam plane
wave) provided that the linear dimensions of the illuminated area are large
relative to the decorrelation length of the surface. The only essential dif-
ference between the limited area result and (15) will be the appearance of

the diffraction pattermn of the finite illuminated area. If the linear




dimensions of the 1lluminated area are not large compared to the dcecorrelation
length, the above results do not apply. However, this is an entirely dif-

ferent problem which will not be considered here.

Discussion

The appearance of a specular term in the expression for the incoherent
power is certainly a bit surprising. Consequently, it is desirable, if not
mandatory, to seek some physical explanation for this result. Unfortunately,
no such explanation has been found primarily because the statistical moments
of the scattered field are obtained by mathematical operations governed by
the laws of probability rather than physics. From a very fundamental point
of view, this problem is closely akin to Inquiring into the physical signifi-
cance of statistical dependence and this question, to the author's knowledge,
has no satisfactory answer. When decorrelation implies sturistical indepen-
dence, there is no specular part of the incoherent power because the second
moment of the scattered field behaves asymptotically (as |A:tf’®) exactly like
the square of the mean scattered field. When decorrelation does not imply
statistical independence, this is not the case because no two points on the
surface, even as |A;tr*° , sScatter statistically independent of each other.
That 1s, the second moment of the scattered field does not approach the square
of the mean field even as !A:tl*w . As a final word of caution, one should
not confuse functional dependence with statistical dependence; they are, in
general, completely unrelated mathematical concepts.

The appearance of the specular term in (15) coupled with the lack of any
' experimental scattering data showing this effect (to the author's limited
knowledge) suggest that decorrelation does indeed imply statistical fndcpen-
dence for real surfaces. However, the purpose of the present analysis is not

to address this question but rather to consider the theorectical scattering
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implications of statistically dependent surfaces. It is theiefore beneficial
to illustrate the strength of the specular part of the incoherent scattered
power using a relatively simple example. Such 18 the intent of the next

section.

Numerical Example

In order to keep this example as simple as possible, the surfuce is
stipulated to be very gently undulating. More specifically, the surface hLeight
spectrum is postulated to contain no spatial frequencies the order of or
larger than the electromagnetic wavenumber ko and the variances of all orders
of surface height derivatives are taken to be arbitrarily small. Under these
conditions the physical optics approximation for the current induced on the
surface 1is valid, i.e.

I =@ xu'@d (16)

1/2
where A(r) = [-QRT/3x)% - (3T/3y)§ +21/[1 + Br/ax)2 + (3¢/ay)?) /2 (s the

upward directed unit normal to the surface. Substituting (16) in (2), taking
the stochastic Fourier transform of this result, and then separating the ;t“

dependence off as in (12) yields

S
o q (' P el
jq(k,K) - ZHO(ZW) 6(k-kiz)[C26(K)-ij6 (KIX)G(sz) JLyG (kly)é(szﬂ
(17)

vhere S =1 + §; and the K's are transform variables associated with the

following stochastic variables (with p = x or y);

K« Vg0,

K, < ag/ap
Ky, +> 32/3p g, W, o

The constants C: = G xh) with both p and q ranging independeutly over x, y,

and z are related to the polarization of the incident fileld. Substituting

4~-12
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(17) in the second or specular term in (15), denoted as Vﬂf(Es)_' ylelds the

following result:

: - 2 2 T2 £ eny e %2 _y?]
Var (Eg) [T @m Ac(kﬁt kit)(ZHo)[(l k*X)(C )7+ ok oy ()

= -+ - -
{?Z(Rsz_kiz’-ksz+kiz"Att‘-m) - pl(ksz.kiz)pl(-ksz+kiz)}
(18)
where 32 and Bl are now the joint two point and marginal characteristic func~

tions, respectively, of the stochastic height only. Normalizing (18) Ly the
Wi
squared magnitude of the field scattered by a flat surface, IE;I“, aud noting

that specularity implies ksz- -kiz leads to the following;

Var(Ea)s - -
gt Bem e e B Rk a9
]

The squared mean scattered field, similarly normalized, is given by

A )
_|—E—°_|_2— = p(~2k; Jp(2k ) (20)
s
The specular part of the incoherent power, as given in (19), should be
compared to the first term i{n (15) in order to determine which is dowinant.
However, the first term in (15) will depend, in the physical optics approxi-~
mation, primarily upon the slope statistics. Since (19) is governed by the
beight statistics, it is possible for these two terms to exist in almost any
ratio. A more meaningful assessment of (19) results from comparing it to
(20). Such a comparison, in essence, relates the specular portion of the in-
coherent power to the coherent power scattered from the surface.
For this example the jJoint probability density function is taken to be

exponent{al {Lennon and Papa, 1981}, e.g.
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* 3 " +r' .
P(C.T.';IArtl'“) - 7 exp{ - — (1)
2u<g > <r2>/3
where <;2> is the height variance. The joint characteristic function can,

with the aid of Fourier transform tables [Campbell and Fostcr, 1961}, be

shown to have the following form;

2 ~3/2
P - <>
Blekts [6F =e) = [1+ 52 (nerd)] (22)
The marginal characteristic function may be obtained from (22) by taking k'=0.

Substituting these results in (19) and (20) yields

Var (Eg) ) =3/2 , -3
——-—'2— = (1 + 82°/3] - [1 + 4L°/3] (23)

|Eg

and

2

|<E >| -3
8 .1 +42%/3) 24)

|e2|?

whetre 2-k° <§2> cos0 is the Rayleigh parameter and 0 is the angle of inci-
dence measured from the z-axis. Figure 1 illustrates the variation of
Var(Es)s‘/IE;lz (the incoherent specular power) and |<Es>|2/|E;|2 (the coher-
ent power) as a function of the Rayleigh parameter.

When the Rayleigh parameter is small, the incoherent spccular power is
considerably smaller than the coherent power as it should be. In the neigh-
borhwod of Z=1 the incoherent specular power is equal Lo the coheruvnt power

and for L >1 it greatly exceeds the coherent power. For large Rayleigh param-

eter, the incoherent specular power behaves asymptotically like 2_3 while the
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coherent power is proportional to L6,
It is obvious from the results in Figure 1 that the incohcrent specular

power cannot be ignored. Since the total power scattercd from the surface

i o s BET A WA AT T

must be in agreement with the incident power, the existence uf the coherent

specular power must be at the expense of the diffuse part of the incoherent
power, i.e. the first term in (15). That is, the Rayleigh paramcier way have
to be relatively large before the diffuse part of the incoherent power is sig-
nificant relative to the incoherent specular and the coherent powers. Thus,
when comparing the diffuse power scattered from statistically independent and
dependent surfaces (as |A;tr*°) with comparable height variances, one should

expect to see a significant difference for small to moderate values of the

Rayleigh parameter. For very large values of I this differcnce will disap-

pear and the asymptotic theories of Barrick [1968] or Sancer [1969] will be

valid. Por statistically dependent surfaces, Figure 1 illustrates that the
validity criterion for these asymptotic theories should be based upon a vanish-
ingly small value of incoherent specular power rather than a negligible coher-
ent power.

The reader is reminded that the purpose of this paper is to analytically
describe the scattering from a surface for which decorrelation does not imply
statiastical independence. This paper does not advocate the existence of such
gurfaces in the real world; only measured statistics can answer this question.
However, these results do show how electromagnetic scattering measureuments can
be used to identify such surfaces provided that great care is taken in separat-

- ing the coherent from the incoherent scattered power. Finally, these analy-

tical resu.ts also show that extreme caution should be exercised in fitting
statistically dependent functional forms for the probability deansities to
limited histogram measurements if one is interested in conditions correspond-

ing to1 SLS10.
4-15
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Figure Captioas

Figure 1. A comparison of the coherent and incoherent specular puwers scat-

tered by a perfectly conducting, exponentially distributced, gently widu- !

lating, random surface. Both powers are normallzed by a common tactor.
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Scattering From Randomly Rough Surfaces And
The Far Field Approximation
by
Gary S. Brown
Applied Science Associates, Inc.

Apex, North Carolina 27502

Abstract

This paper derives rigorous results pertaining to the validity of the
far field approximation for scattering from randomly rough, perfectly conduct~
ing surfaces having arbitrary statistics. The methodology employs the stochas-
tic Fourier transform of the current induced on the infinite surface by either
a bounded or unbounded incident plane wave. The results are general in that
no approximate simplifying forms for the current are employed. Exact expres-
sions are obtained for the mean and variance of the scattered field for unbounded
illumination and they are compared to the far field approximations to illustrate
how the latter simplifications fail in this limit. Some of the pitfalls of the
far field approximation in the case of beam illumination are discussed. When
the incident plane wave is bounded, the conventional far field form for the
mean scattered field can be rigorously derived for arbitrary surfaces pro-
vided the cross sectional area of the incident beam is large compared to the
square of the electromagnetic wavelength. The conventional far field result
for the variance of the scattered field is shown to require the additional
gtipulation that the cross sectional area of the incident beam contains many
decorrelation intervals of the surface roughness. The results obtained herein
are important because they hold for arbitrary surface statistics. whefeas
they appear to duplicate previous results, it must be remembered that the
earlier results were only valid for a special class of surface statistics, i.e.
surfaces for which single scattering theory holds.
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Introduction and Summary

One of the most useful descriptions of a deterministic body scattering
(or radiating) electromagnetic energy is the so-called far field approximation.
The general formula for the electric field scattered by a perfectly conduct-
ing body and evaluated at a point io exterior to the body is as follows;

n > &> > >
o % xY XfJS(r)G(|R°—rf) ds (1)

3y
~~
oy
~—
]
1
[
o

where no = ¢u07e° is the characteristic impedance of free space, ko==21r/)\0
is the electromagnetic wavenumber, G is free space Green's function
+ > > -+ >
exp( -] kolRo— rl)/éﬂlRo- r| , and Js is the current density on the surface
-
S of the body. If the point Ro is sufficiently far removed from the body

that (2) may be approximated by the following expression [Van Bladel, 1964]
E®@)xjkn cRIk xk x [J (Jk_k _*r) dS 2
( % 3kyn GR) Kk s gr)exp Gk k_°r (2)

where is is a unit vector specifying the direction of the point ﬁo , then
(2) is essentially the definition of the far field scattered by the body. The
results of extensive computations by Hansen and Bailin [1959] have provided
much insight into the magnitude of ﬁ; necessary to accurately replace (1)

by (2) for deterministic currents. Consequently, the range of validity of the
far field approximation is reasonably well understood for deterministic prob-

lems.

When the geometry of the scattering body varies on a sample-by-sample
basis so that it i3 more conveniently described in a probabilistic manner,
the concept and implications of a far field are less well understood. The lack

of clarity for this situation stems from two difficulties which are not
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encountered in the deterministic case. First, for the deterministic geometry
one may postulate certain cannonical current distributions, compute ES from
(1) and (2), and obtain very useful information on the range of validity of
the far field approximation. However, for the random geometry this cannot be
done because the dependency of the current upon the random geometry is criti-
cal and it must be obtained (not postulated) from the boundary equations.

The second difficulty stems from the need, for the random geometry problem, to
know not only ES but all or a portion of its statistical moments and these
are not as simply related as the scattered field and power in the determinis-
tic case.

A few studies have obtained useful results on the random geometry-far
field problem [Barrick, 1965}, [Miller, 1982}, [Fung and Eom, 1982]; however,
they are limited by the use of an approximate form for the current and only
the inclusion of a quadratic phase term in (2). What is really needed is some
general insight into the far-field approximation, as it applies to the random
geometry situation, which is not limited by restrictive simplifications. Such
is the goal of this paper.

The first problem to be considered is that of a randomly rough, perfectly
conducting surface which is infinite in horizontal extent and illuminated by
an unbounded plane wave. This infinite geometry/illumination case is selected
as the starting point because the current on the surface assumes a somewhat
simplified form and this permits the derivation of some useful exact results.
Although the far field assumption is not applicable to this problem, results
obtained from this approximation are reviewed in order to illustrate the func-
tional dependencies predicted by it. The mean and the variance of scattered
field are next obtained using the exact expression for the scattered field,
i.e. (1). The mean scattered field 1s shown to be a plane wave propagating

away from the surface in the specular direction. The amplitude of this plane
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wave is reduced relative to the amplitude of the incident plane wave by the

effects of the roughness on the surface. The polarization of thg scattered
plane wave is dependent upon the multiple scattering processes occurring on
the surface and this shows that the mean scattered field, contrary to previous
statements [Moore and Williams, 1957], is governed by the laws of diffraction
and not reflection.

' The exact expression for the variance of the scattered field is found to
be considerably more complicated than the mean scattered field relationship.
However, the exact expression clearly shows that the far field approximation
is not applicable when the surface and the illumination are unbounded even
though the point of observation is taken to infinity.

The results obtained for the unbounded geometry/illumination problem are
iwportant from a theoretical point of view but they have little significance
relative to the practical situation wherein the illumination is bounded, i.e.
a beam plane wave. When the incident illumination is bounded, the problem
becomes difficult because the surface current is more complicated. However,
it is shown that when the illuminated area is very large compared to &3 .
the cutrrent appropriate to the unbounded illumination case in conjunction
with the bound on the incident illumination may be used with little error.

This result for the current is then used in (1) for the purpose of com-
puting the mean and variance of the scattered field. When multiple scattering
on the surface is negligible, this procedure produces an exact result. When
multiple scattering is important, the procedure leads to an underestimation of
the true jilluminated area on the surface, i.e. the true illuminated area is
the area over which the current is nonzero. However, as long as the geometric
cross sectional area of the incident beam is large compared to A;Z, the error

in this procedure is small. Proceeding with this approach, i+ is possible to
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show in a very clear manner why the far field approximation for the scattered
field and the case of a randomly rough scattering surface is not valid as the
illuminated area becomes infinite. Finally, conditions are derived under

which the far field simplification is valid for arbitrary surfaces.

While the far field approximation hag been used extensively in randomly
rough surface scattering problems, justification of the approximation has here-
tofore been limited at best. The results presented in this paper provide a
general foundation for the approximation and yield insight into why it fails

for an infinite surface.

Background

The surface described by z = [(x,y) is assumed to be infinite in the
x and y directions and for z > Z(x,y) the medium is taken to be free space
while for 2z < Z(x,y) the medium is perfectly conducting. The stochastic
surface height I[(x,y) comprises a zero mean, statistically homogeneous process
with the mean surface corresponding to the - = 0 plane. A plane wave illumi-
nates the surface and its spatial support in the x-y plane will be taken to be
either bounded, i.e. a beam plane wave, or infinite. The explicit form of the

incident plane wave is as follows;

> s +> A
l-:i = Eo exp (- j ki r)e(rt) ey (3)

A

where Ki = koki = Ei + ki z and Qi specifies its direction of propagation.
t z

The function 6(; ) represents the support of the incident plane and its

t
dependence upon ;t = xx + y§ signifies that it is independent of the z-
dimension.
The mean field scattered in the direction ﬁs and having a polarization
i é 1is, in the far field approximation, given by the following;

I

5-5




PR

A A ~ -+ e ." .
<E e@> = I‘e-ks x ks xf(js(r) exp (3 kszg + ] kSL r[) dsd

where E +k z=k k and T=3jkn G(R ). To simplify matters somewhat,
. s, o's 0o o

the integration over the rough surface is transformed into an integration over

the z = 0 plane through dS =\Jld-(3§/3x)2 + (ag/ay)z d;t where d;t = dxdy
and ‘3%/3x and dy/dy are the surface slopes in the x and y-directions. Thus,

defining the modified current 3(;) as

L]

3® =V1+ uan® + euam? 3@

the far field upproximation for <ES + &> becomes

> ~ A D »~ > > - -> -
< . = . 3 s . y;
E_-&> =T &k, xk_ xf(ﬂ:) exp (J kszz;>>expu kg T 9% (4)

The average in (4) may be explicitly writter as follows;

<}(;)e‘P(iks £)> =ff 3(;)91(2:,%,‘72&.“')exp(jks z) dzdvg: -+ (5)
z FA

where V¢ 1s symbolic for the surface slopes, VZC is symbolic for the sur-
face curvatures, ctc. The function Py in (5) is the single point joint
probability density function for g, VZ, VZC, etc. The integrations in (5)
may also be written as convolutions of transforms with respect to the stochas-

tic variables, i.e.

1 3 > »> - -+
o> B ———ie von .o - - P .o
5, f fj(rt’klskza ) ¢1(ksz kl; kz, ) dkldkz 6)
(2m)

where 8 = ? i and
i=)
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3= 3¢y exp (3,5 + k) ae av (74)

n=1

2, .7 Treee o i
>, =f---fpl(c,vc,---) exp(jklc + 3 z vy 'kn+1>dé avg {7b) ;
n=1 :

With K signifying the dependence upon KZ’I3’." , & substitution of (6) into

(4) yields the following;

> . A N~ 1 3 > - - > + > o>
. = . x x —_— - -k 3 .
<EZS e>=Teg ks ks s fffJ(rt,kl,K) q;l(ksz kl, I\)exp(Jkst rr)drtdkldk
27

It should be noted that (bl 1s the single point joint characteristic function
for the random variables C,VC,VZC,"'

In order to proceed further one must have some knowledge of the stochastic
hragee -+ .
J(r ’kl’K) . In particular,

Fourier transform of the modified current, {.e. ¢

> >
the variation of J with rt is essential to determining the directional

A

characteristics of the mean scattered field, i.e. the dependence of <ES ce>

> > >
upon ks . The only case for which the exact rt—dependence cf J 1is known

t
is when the incident plane wave is unbounded or 6(;t)= 1 for all ;t . When
this occurs, it has been shown {Brown, 1982b] that 3 assumes the following
form;
3 > > -> > -+
J(rt,kl,k) = j(kl,K)exp(-jki ~rt) (9)

t

~

Substituting (9) in (8) and taking & orthogonal to ﬁv in the specular

o

direction yields

S
> A 2 > - P > _ _+ -+ @
<Es°e> = (2m) I‘G(kst—kit) ffe j(kl.l() Cbl (ksz kl, K) dkld}\/(ZTT) (10)

This result indicates that the mean scattered field is a spherical wave modified
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by a product of two amplitude weighting factors - the §-function and the inte-

gral term. The integral term is entirely a consequence of the surface rough-

ness. The 6(§s _ii ) factor, loosely interpreted, shows that the scattered
field is nonzetotonl; in the direction ﬁstzﬁit .
of observation is above the surface the condition ksz = -kiz must also be
satisfied. The form of (10) is certainly less than satisfying and, in fact,

Furthermore, since the point

only'has meaning when compared to the field "scattered' by a flat plane in the
far field approximation {[Brown, 1982a]. In short, (10) cannot be taken liter-
ally but, instead, must be interpreted.

The second moment of Es e , in the far field approximation, is obtained
by forming the product of (2) and its complex conjugate and then averaging
over all stochastic variables. The averaging operation requires use of the

-

two point joint probability density function, i.e. p,(L.,%,,VZ.,VC .---;; -r
2°°1°7°2° 71 72 £, ot
which depends not only upon the random surface characteristics at ;t and
1

-> -+ > >
T, but also on the vector distance r, T . Since Es is polarized orthog-

t
2 n 1 -2
onal to ks in the far field approximation, e 1is also chosen to be orthogonal

to is and the second moment, using the far field approximation, can be written

as follows;

)»

<|t,-8]%> = ll‘lszlj(?l)@][3*(?2)-6]p2(c1.c2.vc1,Vr,2,'--;?t F, dexplik_+ (7 -1,

1 2

> >
. drtldrtzdcldcdeCldVCZ

Converting the integrations over the stochastic variables to convolutions in

transform space and using (9), the above result can be manipulated into the

following form;




Aro (2m)

<|E, ve]®> = lin —élzl—-"i-;I}}(kl,ii)-al[3*(-k2.-ﬁ2)-8]

-+ - -> -+ &> -
<b2(ksz-k -ksz—kZ’-Kl'-KZ'Art)exP[;(ks -k1 ).Att] dAr dk. dk dK dK

1 ¢ e 172712

11
where A 1is the illuminated area and an

d’z(k k Kl 1(2 Ar ) f fpz(cl.Cz,acl,al;z,Ar )eXP[J(kl Lt k2 2
+X + K, +9z,) | dz. dz,d(3z,)d (3 12)
L0z, + K0z, | dg dz,d(9z,)a Gy (

is the two point joint characteristic function with a;l and 352 symbolic
for all orders of surface height derivatives Vnc,n—l,Z,"' . Assuming that
the surface statistics are such that decorrelation implies statistical indepen-
dence yields

>
t

This condition implies that cbz will have infinite support with respect to

A;t and so the transform of ¢., contained in (11) will yield a §-function

dependence upon _l:s -i:i . This problem can be overcome by using a function
t t

in the integrand of (11) which has a finite support with respect to A;t

Thus, by subtracting and adding ¢)(- +3©) to the integrand of (11) yields

<|E 5% - lim ~£d!j~—-.jn .IﬂLj(kl Kl)-e][j (-kz,-K )e e]{}bz(k - -kz,-ﬁl,—fz;A?t)

@2n)

> > > > - >
- ¢‘2(ksz—kl.—ksz—kz,-Kl,-Kz,w)} exp[j (kst-kit) -Art] dArtdkldkszldKZ

z
+1:l.m Azr( ) & k)f f[]a‘l"l)e”j(kz"‘)e]

7% @2m

<b2(ksz-k1,-ks K, s xl,-i se0) dk dkzdﬁldxz (14)
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Because of (13), Cbz(-,-;w) may be rewritten as a product of marginal

characteristic functions. Furthermore, since the surface roughness is a zero
mean process, the marginal characteristic functions will be real and symmetric.

Returning to the integral definition of 6(-128 .i:i ) , it may be shown that
t t
|6(-l:s -;i )|2 should be interpreted as follows;

t t

> - 2 - -+
[6(k_ -k, )|° = 1im A 8(k_ -k, )
L8 1y Avoo 8, 1,

Thus, the last term in (14) 1s recognized to be the magnitude squared of the

mean field, i.e.

ri2
Y .
|<E_-&>| ii. 2(5 5 6(k -k (kl, Yy kl,-Kz)dkldKl
(2m)
(15)
and so the variance of the scattered field is as follows;
Var (E_+&) = lin —Am—fffﬁjckl,il)-a][3*(-k2,-§2)-al
(2m)
P (k -k, ,-k -k ,-K.,-K ;K -k dk. dK. dk (16)
P, s, 1" s~ 2o KKk s, 1 t)dkl 29K, 9K,

where [T|? = (e n /R )%, &,(8,) = &,(F,) - &, , and

e

= > > -»> > > >

®, 0, sk -fi ) = f{d’z("';’h:) -¢2('.';°°)}exp[j(ks —k; )edr 1dAr.  (l6a)
t 't t 't

The important point to note about (16) is that the directional characteristics

of Var(f;é) are determined essentially by th. ~r transform of ?52

evaluated in the direction ks -ki . That 18, the far field approximation

t t

predicts that the variance of the scattered field is proportional to only one

Fourier component of 32 .

5-10




The results obtained in this section are not intended to justify the use

of the far field approximation when the surface extent and the illumination

are both unbounded. Rather, this section is intended to serve two other pur-
poses. First, the technique of treating averages as convolutions in stochas-

tic transform space has been introduced and used for the purpose of familiari-

zation. Second and more important is the fact that the only approximation con-

tained in this section's results is the far field approximation. Thus, it is

now possible to obtain similar results from the exact expression for the scat-

tered field and compare them with (15) and (16) without having the comparison

tainted by the use of an approximate current. That is, any differences between
(15) and (16) and corresponding exact results will be solely a consequence of

the far field approximation.

Exact Results for Unbounded Illumination

The exact mean scattered field can he obtained without much difficulty
from (1); however, this i1s not necessary since it can also be derived from

<|§8°6|2> ,» apart from a sign,by the same approach as demonstrated above. The

derivation of a simplified expression for <|E;°8]2> from (1) is also not

difficult but it is involved and normally it would be better to relegate it

to an appendix. However, it does contain a very important simplifying step

and so it will be included in the main text. To avoid a minor difficulty
[Brown, 1982a), surfaces for which decorrelation implies statistical inde-

pendence will be assumed.

Using (1) and the technique of converting averages into convolutions in

transform space yields the following;
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<|Es-a|2> - (no/kolzf---ff{ b FLY, &, (-kl,-kz.-il,—iz;z\?t)d?t

1
> > 2s°°
. /@2~
chrtzdkldkzdl(ldlc2 (2m) (17)
where A; = ; —; and
t tl t2

-1 A 3 > -+ > > .
F{ }1 = (2m) " @&~ Vox Vo x ff J(rtl ’kl-Bl’Kl)G(Rot'rtl’zo -cl)exp(Jelgl)dcldBl

-1 . . 3y > - -+ x> _ .
F{ }2 = (2m) ~ e VOXVOX ffJ (z"__z,k2 BZ,KZ)G (Rot rtz’zo Cz)exp(JBZC?_)dCZdB2

and io = Xo'i + Yo9 is the horizontal distance fromthe origin on the surface to
t
the point of observation. The tilde symbol over 3 and J* denotes the

Fourier transform with respect to the stochastic variables. Since both the
surface and the illumination are unbounded, (9) may be used along with the
following;

! > 3 > - *

Thus, (17) reduces to the following form;

> 12 2 ~ > -+ -+ > o >
<|E 2] >'("'o/l‘o)f"'.]‘{e"voxvo"j (kl—al’Kl)c(Rot_ rtl’zo-cl)exP[—Jkit rt:l+jﬁlcl]}

A, _ --b %2 _-P
. {e voxvoxj*( k2+82, KZ)G (R° r

> >
z -z )exp[ +3k, °T, +1B.C 1}
¢ o °2 it t2 2°2

tz'

2(stl)
> - -5 -+ -»> 5 ©
®, (-kl,-kz,-1(1,-12;&:)41:t drtzdcldczdﬁldszdkldkzdl(ldl(z / (2m) (18)

1
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The r, ~integration involves only the functions ¢ and dbz. Using the shift
1

theorem for Fourier transforms and the two-dimensional Fourier transform of

-
G , the rt-integtation may be expressed as follows;

2 > 2' .
fexv[-j \ G RN
—'2'/k2 % k)2
J o—( i t

t

f ¢ d, exp (-jiit-¥tl)d¥tl= 2m) exp (-ﬁit-i{ot)

. ¢2 (- .o_k )exp[jk C(R t-rtz)]dkt (19)

where the tilde over & denotes the transform from A; to i and

2 t t
(ﬁ -K )2 - (K —ﬁ )~(K -K ) . Since the point of observation (X ,Y ,Z )
it t 1t t 1t t o’ 0’70
is to be above any realization of the rough surface, IZO-Cll = Zo-cl . Sub-

stituting these results in (18) and performing the Cl-integration gives rise

to a delta function, i.e. 6(81 +Jki - (i:i —-l:t)zi ) » which makes the Bl-
t
integration trivial. Thus, remembering that ZO must be above the surface,

(18) reduces to the following;

< |§8-3|2> - (nolko)zf. . -f{a.voxvox §(kl+.<,'il) exp[-Jkz_+3k * (fio -?tz) 1/ (-32¢)
t

. _ -»> .‘P A. -b* _ -§ * > _" _
exp (-1, Rot)}{e U (kytBy KR T, .2 -2,)

t t 2
-+ e d ~ -> - 2sd+3
explHik, °F, +j32;2]}q>2(-,-;-kt)dczdﬁzdr dic, dk, dic,ak dk, /(2m)
t 2 ty
(20)
1/2
2 -»> > 2 -+
where K = [k° - (ki -kt) ] . The L -integration in (20) yields the two-
t 2

dimensional Fourier transform of c* which contains an exponential term whose
argument is proportional to ]zo-;zl . Dropping the magnitude sign since 2,
is to always be greater than 52 and performing the Cz—integtation in (20)

yields a S-function which simplifies the 82-1ntegration. The result is as
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follows;
<|E 2]® = (kY f f f f f {e-9 50 % (4K exp (5K zo—jit-iotl J-320}

A * - - - - +> - )%
. {e'VOXVOX j(k—kz-ﬂt,-xz) exp[-jk Zo-jkt'Rot]/(-jZK)}

- > > 25,512
B, (ky,-ky, K| ,-Kysk K, )dk dic, dic, dK dxz/(zm (21)
where k = [ko kt] . Regularizing the integrand in (21) so that it does

not contain a G(It --1:1 ) dependence entails subtracting and adding

t > > o
c12’2(-,-;0") prior to transforming from Ar to k,-k, . Thus, with
t

cbz(-.-;kt-kit) = f[c‘bz('.-;Art) —<I>2(-,~;"°)1exp[:i(kt-kit)-aﬁrt]dl\rt

and the fact that cb2(°,°;°°) may be written as a product of marginal charac-

teristic functions, the regularized form of (21) becomes

<|§s.e |2> = (nolko)sz f f f {a.voxvox](klﬂz,'il)w(ic*t,io)} {éovoxvoxj]?(-kz-&i,—ﬁz)w(gt,ﬁo)}*

2s +2
[+ ]

= T T S ¥ +
. 4:2(-kl,-kz,-xl,-xz;kt—kit)dktdkldkzdl(ldl(z /em

2 A, > > - a. -»> > > - *
+(n /x ) f f f f {e voxvomkl,xl)w(kit.io>} {6:9,7,43 (kZ.Kz)wkit.Ro)}

2 »+2 - 2 soo
¢1(-k1+\lko -k, “ LK) D (k, k N l(z)dkldk dK ‘“‘z /(zn) (22)

it
> - ~ A ~ e 2 -’2 1/2
where Ro xox + Yoy + zoz s k= (ko -kt) , and
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+ > - -+ -
v K = expl- 3k z_ - jkt-i!ot] [ 320 (22a)

The last term in (22) is the magnitude squared of the mean scattered field,
|<§S °€>|2, and the following operations demonstrate this fact. Since <bl is
real and symmetric in all transform variables, the last term in (22) which re-
sults from regularizing (21) is recognized to be the product of one set of
1nteérals and its complex conjugate. Thus, it may be expressed as follows;

+» A 12 ~ > -> > > 2 2 >
|<£s-e>| sf(no/ko)ff{e Voxvoxj (kl,KI)w(kit,Ro)} q;l(-kl-o-\/ko-k1 ,-Kl)

t

-> Sw
dk, 4K, / m)

2
l @23)

The function w(kit,ﬁa) is independent of kl and El and is a plane wave. The
o it

because Zo is positive; this dictates the following form for w(ﬁi ,ﬁé) H
t

-’
root of must be chosen such that w(ki ,ﬁo) is upward traveling
t

> > -+ -+
w(kit,Ro) = exp [-jlkizl Z, - jkit-ROt]/(-j zlkizl) (24)

where the magnitude signs on ki are used because, according to (3), ki <0.
z p

-
The quantities VOXVOX.jw may be manipulated using vector identities into the

form
> 2 > -»>
voxv xTy =k [u I+ Gevv v] (25)

By expanding the vector operations in (25) with the aid of (24), it may be

shown that

Vo x Vo X 3’4, -[k: x k: xﬂkows/(-ﬁcosei)

where 61 18 the angle of incidence measured with respect to the z-axis,
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k: is a unit vector in the specular direction. i.e.

]
S

. > ~ >
kg = Gk, + |kiz|z)/|kit+ Iki

E
t

2

and

I\S N
lps = exp(-] koRoks ks)

Substituting these results in (23) and taking é’kz = 0 yields

~

S

n_y
2 0's AT > R i -+ 0
" |Zcos 6, ffe 30k K) D, ( k1+lkizl' KZ)dkldKl/(M)

|<E,-2|
S

(26)
and it can be shown that the expression inside the magnitude brackets is iden-
tical, except for a minus sign, to the average of Es-é obtained from (1).

Substracting (26) from (22) gives the following relationship for the variance

of the scattered field;

Var(Es-a) = (no/ko)i]tj:‘:(:l.{a-voxvoxﬁ(k1+i,il)¢(Kt,Eo)} {é-voxvox}(-k2+i,-ﬁz)

~ 2s 42
> > * = -> > > > -+ > > o
w(kt,Ro)} ®, (-kl,-kz,-Kl,-Kz,kt-kit)dktdkldkzdl(ldl(z/(Zn)
27)

Unfortunately, the integrations in (26) and (27) cannot be accomplished in

general without knowledge of 3, Cbl, and Cbz .

The important point to remember about (26) and (27) is that they are both
exact results. Furthermore, it is not necessary for the point of observation
Ro to be infinitely far from the surface. The only restriction on these

results is that the point of observation be above any realization of the surface.

Comparison of Exact and Far Field Results

Equations (15) and (16) are results obtained using only the far field
approximation while (26) and (27) are exact. A comparison of the two sets will
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show how the far field approximation breaks down when both the surface and
the illumination are unbounded.
The exact result for the mean scattered power, i.e., (26), shows that the

mean scattered field is a plane wave propagating in the specular direction,

k¥ =k and k° = -ki . Furthermore, it can be shown that (26) yields

s s s

thz corréct reflecied po;:r when the random surface goes to a plane. The far
field approximation for <E;~€> , 1.e. (10), yilelds a spherical wave with an
amplitude weighting such that it is nonzero only in the specular direction.

In the limit of the random surface approaching a plane, the far field approxi-
mation does not reduce to a reflected plane wave traveling in the specular
direction. It is interesting to note that although the far field approximation
does not produce the plane wave nature of the scattered field, it does contain

the proper dependence upon the statistical properties of the surface because

in the specular direction kS = lkizl .

Equation (26) does not provide any insight into the polarization of the
mean scattered field; the polarization is determined entirely by the transformed
current ](kl,zl) . If there is no significant multiple scattering occurring
on the rough surface then <Es> will have the same polarization as a field
reflected from a perfectly flat surface. In this case <Es> will have all of
the characteristics of a specularly reflected field except that it will be
attenuated by the effects of the surface roughness. 1f multiple scattering is
significant,‘the polarization of <Es> will be different from that of a planar
surface reflected field. This result shows that, contrary to previous thoughts
[Moore and Williams, 1957], the mean scattered field is not governed by the
laws of reflection if multiple scattering on the surface is significant.
Furthermore, it is not advisable to refer to the mean scattered field as a

-3
specular field since <Es> does not always have the characteristics of a true

specularly reflected field.
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According to (16) the variance of the scattered field is linearly related
to the illuminated area and inversely proportional to the second power of the
distance from the origin on the surface to *he point of observation. More
importantly however is the fact that the variance is determined by the Fourier

d =d
transform of the regularized characteristic function evaluated at kS --ki s
t t

i.e. see (16) and (16a). This is a direct consequence of the fact that if one
représents the scattered field in terms of an angular spectrum of plane waves
(Clemmow, 1966], the far field approximation leads to a scattered field which
is determined by one and only one angle or direction in the spectral represen-
tation. In terms of the variance of the scattered field, this means that one
obtains a result which is determined by one and only one Fourier component

of the regularized characteristic function. Contrast this result with the exact
result as given by (27) in which the variance of the scattered field is deter-
mined by a weighted integral of all Fourier components of the regularized
characteristic function. 1In fact, the very presence of the ﬁt-integration in
(27) shcws tnat there is no such thing as a far field for the case of unbounded
illumination regardless of how far the point of observation is moved away from
the surface. For example, by moving the point of observation away from the
surface one merely sees less of the surface waves propagating along the surface.
In fact, in the limit of Ro-*m the gt—in:egration in (27) is essentially
limited to the visible range (ii <k§) because of the w(Kt,ﬁo) function;

but Var(gs~€) is still determined by a weighted integral of all Fourier
components of 552 over the visible range of wavenumbers. As an aside, it
should be noted that although one does not observe any surface waves as Ro-ND
they still influence the result through the transformed current 3 . As a
final point, it can be shown that (27) goes to the proper limits in the cases

of a planar surface or a randomly elevated planar surface whercas (16) does not.
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It would be very beneficial if the it-integration in (27) could be accom-
plished without explicit knowledge of either ] ort52 . However, this 1is not
possible primarily because the convergence of the integral is highlv dependent

upon 3 and &b . This can be seen by noting that if the 5'5 and &5 are set to

v

unity, the kt-integration is exactly equal to the integral of fié'VOXVU*G(RO)]E:
over the x-y plane and this integral does not converge.

‘It is certainly not surprising that the far field approximation fails when
the incident illumination is unbounded. In the case of the mean scattered
field, it has been shown that the effects of the surface roughness are correctly
predicted by the far field approximation. However, for the variance of the
scattered field there is a very fundamental difference between the far field
results and the exact results and so the far field approximation is essentially

useless.

Bounded Illumination

With the exception of certain fundamental theoretical questions, the case
of bounded incident illumination is of most interest. Remembering that the
intent here is to obtain general results which do not depend on explicit approxi-
mate forms for the surface current, the bounding of the illumination causes a
problem because the separation in (9) is no longer valid. In order to under-
stand this difficulty and investigate appropriate approximations, it is neces-
sary to turn to the stochastic Fourier transformed magnetic field integral
equation for the modified current 3 [Brown, 1982b]. This equation is obtained
by multiplying the magnetic field integral equation by exp[jklc + 3 ngl §n+l'Vnc]
and then averaging over all stochastic surface characteristics V";,n=0,1,--
The averages are converted to convolutions in stochastic transform space and

one obtains an infinite dimensional integral equation of the first kird having
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the following form;

~“S» 3+
@mn f f3<rt,sl,§2.---)¢1(kl -8, ,k,-B,, a8 af," -

3 - -+ -> -+ -soo.z = > > o>
= Jo(kl’kZ) e(rt)exp(—jkit-rt) + (27) f---ﬁx(Art,Bo,Sz,kz)

- 3> -> -> - -
";Art)}' J(rt—Art.Bl,Bz."') dArtdBOdBIdB2
(28)

>
®, (k-3 .6, -B) K, =By,
The tiiie over 3 denotes the stochastic Fourier transform (from Vn; space
to §n spaca), :50 is the transform of the stochastic part of the physical
optics current due to the incident field, i.e. 2f Xﬁi , and ? is a dyadic
kernel involving stochastic transforms of Green's function derivatives. When

the illumination is unbos>unded so that 8(;t) =1 for all ;t , it is obvious

that (9) is valid. However, when the support of the incident illumination is ‘
finite, the dependence of 3 on ;t is very difficult to obtain. The Fourier
transform of (28) with respect to T yields
-:'; 3 > +> >
J fJ(k Bl 20 ) (=B k2 § “+)d8; dB = Jo(kl,kz)(-)(kt-kit)

e wsz R INRY: R ,B .5k, ) dka

( Tr) X( ’BO s z)cbz(kl-BO’BO—Bl’ 2°? 2° s t— ) BO

+ >
. [} oo v oo

3k .e).8,, a8, dE, (29)

=
>
J

It is tempting to assume that can be expressed as a product of a kt—dependent

function and one which depends upon 31,52,--- . However, there is no reason

~

for this form to be valid in general because ;(-csz cannot similarly be expressed

8s a product. In fact, it is the presence of the integral term on the rhs of
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(29) which greatly complicates matters. This term is important when multiple
scattering on the surface is significant; in the absence of multiple scatter-
ing ? has the same ;t—dependence as the incident illumination. When there
is strong multiple scattering present, the it-dependence of ﬁt in (29) is
influenced by the statistical properties of the surface through &b in (29).
This result has a simple physical explanation in that multiple scattering
implies that the current at any point on the surface is determined by the behav-
ior of the surface in a neighborhood of the point; thus, the support >f the
current on the surface will differ from the projected area of the incident
illumination. One may also visualize the multiple scattering process in terms
of rays undergoing at least two reflections on the surface before traveling
off into free space; consequently, there will be some rays reflected to the sur-
face outside of the incident illumination support. What this all means is
that the ;t-dependence or the support of the transformed current is determined
both by the incidence illumination and the surface roughness when multiple
scattering is important.

To overcome this difficulty and yet not reduce the problem to the trivial
case of single scattering, it is necessary to assume that the support of the

incident illumination projected on the z =0 plane is very large compared to

Az . If this is true then é(ﬁt'-ii ) will be very sharply peaked about
z t
It’-zi and J must then necessarily have the same dependence. Physically,

t
this approximation implies that the illuminated area is so large that there is

little relative difference between the projected area of the incident wave and
the true illuminated area including multiple scattering. Thus, as long as the
cross sectional area of the incident beam plane wave projected onto the z=0

plane is large compared to Ag , (29) shows that
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3 >
J(rt,k1

K = J(k, 0 9(;t)exp(-j-l:1t';t) (30)
is a valid approximation.

Equation (30) is a very important result but one must be careful to under-
stand what it does and does not imply. Equation (30) can be used to compute
the statistical moments of the scattered field; it cannot be used to infer the
sample~by~sample behavior of the scattered field. Thus, just because 5 has
a finite support does not mean that one may use (2), i.e. the far field approxi-
mation, rather than (1), i.e. the exact expression for Es , because the actual
support of the sample-by-sample current may vary significantly from 6(;t)

This is a point that must be remembered when attempting to make far field mea-
surements of the field scattered by a rough surface. That is, if one bases
the far field condition on 9(;t) » it must be realized that there may well be
some samples of Es which do not satisfy this condition. Thus, one would be
well advised in a measurement program to exceed any distances based on 8(;t)'

As it turns out, the statistical moments of the scattered field are the
same regardless of whether cne uses (1) or (2) in conjunction with (30). How-
ever, as noted above there is no rigorous justification for starting with (2).
Furthermore, there is a very important point in the development starting with
(1) which shows why the far field approximation fails when the illumination is
unbounded. To simplify matters, the development will be carried thru for the
mean scattered field, however, the principles apply also to all the moments of
the scattered field.

Using 3(;)d;t for 38(;)d8, the average scattered field from (1) is
given by

-> n 4 > -+ -+
<1zs(ﬁo)> --3j E:: v x9_x f<J(r)G(|R°-r|)> d?t (31)
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where

<J@e(|k -T])> ~ff3<?t.c,ac>c<lﬁo ~r | 2,-0p, (£,00)dEd (30)  (32)
t

Converting the integrals in (32) to convolutions in stochastic Fourier trans-

. form space yields the following;
. -(Soo+1)f 3 > > -+
<> = (2m) J(rt,kl-Bo,K)G(IROt-rtI,Zo -2)

» exp(3B,2) &, (-k ~K)dzdB_dk, dk

Substituting from (30) yields;

-(Sm+1) -» -> -»> - -> -»>
<e> = (2m) 3k -8 LK) @, (k) ,-K) @ (r )G(|R -1 |, Z -L)
t

- exp(- 3k, °T, + 1B T)dzdf dk &K (33)
t

Inserting this expression in (31) and rearranging integrations yields the

following ;t—integral;

- -+ > -+ -+ -+
./~O(rt)G(IRot-rtl ,Zo—-t;)exp(—jkit°rt)drt

which may be rewritten as a convolution of transforms, i.e.

(2m 2 f 6(-k, +R)CG, ,2 -Dexp(-jk K )k

t t
) -1
- (2m)~2 Sk, - ¥, Jexp [-jiEt-‘R’ - 3V -#2 |z -d](—jz\/kz-i(’z) d
¢ o, o 't 'o o 't t
‘ (34)
Taking zo to always be above the surface implies |Zo - ¢l -=Zo -G .

The resulting dependence of the rhs of (34) on i; corresponds to a generalized
[
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plane wave, consequently, the curl curl operation in (31) may be simplified

to the following;
2 A A >
v xV x Gu) = -k, v kxkx)

where !p-exp(-ji: .ﬁo -_]Jk -k Z )/(—jZsz—'l:i ) and

£ %

£=(§t+Vk§ e )/Ik +Vk2-ki 2|

t

Substituting these results in (33) and (31) yields

17840 @) (=K ,-K) & @&, )

+ - /
. exp[jkt'Ro -3 -k 2z, +3(8, +\lk2 kz)c](k kz Y2

> N sw+3 S

dk, dzdB_dkdK/ (2m) (35)
Since for any realization of the surface Zo > g , the dominant terms in the
-l:t—integration are © and the exponential factor containing ﬁo . For any

9(;t) having finitc support it is always possible to take Ro large enough

that the i:t-integral can be asymptotically evaluated via the method of steepest
descent [Clemmow, 1966]. However, if 9(1‘2) has infinite support then it
dominates the -l:c-integratim because é(ﬁt-fi ) = s(ﬁt-i{i ) . Since use of

the steepest descent method corresponds to th: far field :pproximation

[Clemmow, 1966], it is clear that the validity of the far field approximation

is entirely dependent upon which of these factors is dominant in the -l:t-integral.

It is also interesting to note that the -l:t-integration is essentially of the

sane form tha:z Hansen and Bailin [1959] studied for the case of a uniformly
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illuminated deterministic circular aperture. They found that the far field
approximation is valid for R/ 2 D2/>\o where D 1is the diameter of the aper-

ture. Thus, for Ro > DZ/Ao and 1r(D/2)2 >> &f

, the :t-integration in (35)
may be asymptotically evaluated using the method of steepest descent. Follow~

ing this, one completes the  and Bo integrations in (35) to yield

+> > ~ > > A~ A + > -> + S
<ES(RO)> = jkol'lo G(Ro)e(ks -ki )ks st x ffj (k1+ksz,l() d)l(-kl,—K)dkldK/ 2m)

t t
(36)
where k_ is a unit vector in the direction of the point of observation
-5 ~ A n
(Ro = Roks) and ks = ko z kS is the product of ko and the z-component of

z
this unit vector.

This same asymptotic approach may be used to obtain an approximate expres-
sion for the variance of the scattered. To account for the limited extent of
the incident illumination, it is sufficient to replace } by 3>9(;t ) and '
3* by 3*()(;t ) in (18). One then uvses the steepest descent methoﬁ in
i;space to firsi evaluate the ;tl-integral and then the ;tz—integral. Asymp-
totic evaluation of the ;t -integral leads to the following K—space integra-

1
tion;

~ > > = > > > o>
.I.B(RSt- kit+k2)d>2(-k2)exp(-jk.z'rtz)dk2

If the illuminated area encompasses many correlation lengths then E; is very
sharply peaked relative to <52 and the above integral may be approximated

as follows;

> ~ > > > > o > S > o
(k -k, ) ok -k yexp(-jk,*r_)dk, = k -k, )
2 S, it f s, 1:“2 2 t, 2 2 8, it

O(r, dexpli(k -k, )eF ]
t2 [ st 1: tz
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->
Combining the rt -dependent terms from this result with the remaining ;t
2 2
factors in (18) and expressing the ;t -integral as a convolution in f—space
2
yields the following integral;

02k -K) G (-K,Z -7)exp (GkR_)dk
St o Ot

When this integral is evaluated by the stcepest descent method, one obtains

a res;lt proportional to 5?(0) which, for uniform illumination, is equal to
the illuminated area. The final result f,r the variance of the scattered field
is identical to (16) except that the illuminated area A is finite. Once
again, it is the interplay between the Green's function and the illumination
suprort that determines the suitability of the far field approximation.

It should be emphasized that these results are very general in that they
do not depend on any special approximation for the current induced on the rough
surface. However, these results are only valid if the cross sectional area of
the incident illumination beam, as projected onto the z=0 plane, is very
large compared to AO?. This simpiification minimizes the error due to the
difference between the illumination area and the true area on the surface over
which the current is nonzero. Furthermore, in the case of the variance of the
scattered field, it is also necessary to stipulate that the illuminated area
contain very many decorrelation intervals of the surface roughness in order to
recover (16). When this simplifying requirement is not met, the problem becomes

more difficult and will be left to future studies.
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